Mapping of interaction between cytochrome P450 2B4 and cytochrome b5: the first evidence of two mutual orientations.


OBJECTIVES: The cytochrome P450 (P450) and cytochrome b5 are membrane hemoproteins composing together with flavoprotein NADPH:P450 reductase a mixed function oxidase (MFO) system. The knowledge of the interaction between P450 and its redox partners within a MFO system is fundamental to understand P450 reaction mechanism, an electron transport from its redox partner and also detoxification of xenobiotics and/or metabolism of endogenous substrates with all positive or negative aspects for organisms.

METHODS: The chemical cross-linking by soluble carbodiimide (EDC) in combination with the liquid chromatography coupled with high resolution mass spectrometry (LC-HRMS) has been employed to characterize the contact surface regions involved in the transient interaction between two catalytic domains of P450 2B4 and cytochrome b5.

RESULTS: The cross-linking reaction was accomplished in an equimolar catalytic complex of P450 2B4:cytochrome b5 and the covalent hetero-dimers detected on SDS-PAGE electrophoresis were analyzed (after in gel trypsin digestion) using LC-HRMS to identify cross-linked amino-acid residues. The computed in silico models of P450 2B4:cytochrome b5 complex using amino-acids participating in cross-links (Asp134, Lys139, Glu424 and Glu439 located on a proximal surface of P450 2B4) suggest interpretation that two different types of cytochrome b5 orientations are present in the studied interaction within a MFO system: the first allowing potential cytochrome b5 electron donation to P450, the second one inducing cytochrome b5 modulation of P450 structural changes.

CONCLUSIONS: The results demonstrated the capability of the used experimental approach to map the interaction between P450 and cytochrome b5 suggesting the formation of multi-meric structures within a MFO system as interpretation of the two observed mutual orientations.


 Full text PDF