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Abstract Neuroplasticity is the nervous system’s ability to respond to intrinsic or extrinsic 
stimuli by reorganizing its structure, function and connections. And the nervous 
system monitors and coordinates internal organ function. Thus neuroplasticity 
may also be associated with the pathogenesis of other diseases besides neuropsy-
chiatric diseases, such as cardiovascular disease. The digestive system is controlled 
by the nervous system, mainly by the autonomic nervous system. Stress may lead 
to depression/anxiety and irritable bowel syndrome (IBS). IBS is commonly 
comorbid with depression/anxiety, which are disorders of decreased neuro-
plasticity. And the mechanisms of depression/anxiety and IBS are related. The 
hypothalamo-pituitary-adrenal axis, hippocampus, amygdala and stress-related 
factors and hormones, such as corticotropin-releasing factor, glucocorticoids and 
brain-derived neurotrophic factor are involved in both neuroplasticity and the 
pathogenesis of depression/anxiety and IBS. So we conclude that decreased neu-
roplasticity causes the comorbidity of depression/anxiety and IBS, and increased 
neuroplasticity may be beneficial against the development of IBS. This theory 
provides another angle that can explain some of the reported phenomena related 
to IBS and neuropsychiatry, and provide a potential treatment to protect against 
IBS.

Abbrevations: 
ANS - Autonomic nervous system
BDNF - Brain derived neurotrophic factor 
BLA - Basolateral amygdala 
CeA - Central nucleus of the amygdala
CNS - Central nervous system
CRF - Corticotropin-releasing factor
CRF1 - CRF subtype 1 receptors 

FGID - Functional gastrointestinal disorder
GR - Glucocorticoid receptor 
HPA - Hypothalamus-pituitary-adrenal
IBS - Irritable bowel syndrome
MS - Maternal separation
PND - Postnatal days
PVN - Paraventricular nucleus
SSRI - Selective serotonin reuptake inhibitor
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INTRODUCTION
Irritable bowel syndrome (IBS) is a prevalent functional 
gastrointestinal disorder (FGID) with an estimated 
prevalence of 10–20% (Philpott et al. 2011), which is 
characterised by chronic abdominal pain, discomfort, 
bloating, and alteration of bowel habits. As a prototypic 
and representative disorder of FGIDs, its origin cannot 
be linked to structural, organic, or metabolic diseases 
detected by routine examinations in current clinical 
practice (Drossman 2006). Although not life-threat-
ening, it is a heavy economic burden due to increased 
work absenteeism and impaired quality, and increased 
use of health care services (Saunders et al. 2002). The 
etiology of IBS is multifactorial, involving altered gut 
reactivity and motility, altered pain perception, and 
alteration of the brain-gut axis.

Neuroplasticity refers to the capacity of the nervous 
system to modify its organization such that the nervous 
system can be shaped by environmental input (Bavelier 
& Neville 2002). Individuals show different degrees of 
neuroplasticity due to their different courses of growth 
(Zheng & Xu 2012). Evidence has documented that even 
monozygotic twins may develop different neural struc-
ture and function though having an identical genetic 
background (Fraga et al. 2005; Zheng & Xu 2012). The 
nervous system monitors and coordinates internal 
organ function and neuroplasticity is the ability of the 
nervous system to respond to intrinsic or extrinsic stim-
uli by reorganizing its structure, function and connec-
tions (Cramer et al. 2011). Thus neuroplasticity may be 
also associated with the pathogenesis and the treatment 
of other diseases besides neuropsychiatric diseases. 
For example, increased neuroplasticity may protect 
against cardiovascular disease (Zheng et al. 2013b). The 
digestive system is controlled by the nervous system, 
mainly by the autonomic nervous system (ANS). IBS 
is associated with depression/anxiety, which is closely 
related to neuroplasticity. In this review, we focus on 
some mood disorders, such as depression and anxiety, 
to discuss the relation between neuroplasticity and IBS, 
and provide a potential treatment to protect against IBS.

IBS IS A STRESS-RELATED DISORDER
Exposure to chronic stress may disrupt the normal, 
adaptive stress response (de Kloet et al. 2005). IBS is 
repeatedly reported as a stress-related disorder (White-
head et al. 1992; Farmer et al. 2010). In IBS patients, 
stress is strongly associated with symptom onset and 
symptom severity (Drossman et al. 1996). Experimental 
and clinical data indicate that stress strongly influences 
gastrointestinal motility and sensitivity (Monnikes 
et al. 2001). Advanced methods using a barostat have 
detected a fine increase in colonic wall tone under psy-
chosocial stress in IBS patients (Fukudo 2013). 

Maternal separation (MS), which is  a  well-estab-
lished model of early life stress and induces depressive-

like behavior and long-term changes in cognition in rats, 
is also a suitable model of IBS (Freund et al. 2013; Couto 
et al. 2012; van den Wijngaard et al. 2013). MS induces 
life-long hyperactivity of the hypothalamus-pituitary-
adrenal (HPA) axis response to stress and an abnormal 
central CRFergic system (corticotropin-releasing factor 
(CRF) and its receptors) (Lippmann et al. 2007; Plotsky 
et al. 2005). MS predisposes adult rats to stress-induced 
visceral hypersensitivity, dysfunction of intestinal bar-
rier, hyperdefecation, increased HPA axis response, and 
anxiety (Coutinho et al. 2002; Gareau et al. 2006). Addi-
tionally, repeated water avoidance stress, a validated 
model of chronic psychological stress, leads to height-
ened visceral pain behaviors in rodents that resemble 
IBS sequelae (Tran et al. 2012).

Stress related-psychiatric disorders, especially major 
depression, anxiety, and somatoform disorders, occur 
among 20 to 50% of IBS patients (Garakani et al. 2003). 
Depression is the most common psychiatric diagno-
sis in IBS patients (Creed et al. 2005; Surdea-Blaga et 
al. 2012). IBS patients have higher scores of depres-
sion than healthy controls (Savas et al. 2009; Graham 
et al. 2010), but lower than the psychiatric population 
(Surdea-Blaga et al. 2012). However, depression is more 
common in IBS patients compared to patients with sim-
ilar symptoms and organic gastrointestinal diseases and 
compared to healthy controls (Henningsen et al. 2003; 
Surdea-Blaga et al. 2012). Anxiety is more common in 
IBS patients than in the general population (Lee et al. 
2009). Anxiety tends to precede IBS onset, particularly 
if diarrhea predominates. This indicates that the psy-
chiatric disorder cannot be regarded as a response to 
IBS. It seems more likely that the psychiatric symptoms, 
especially anxiety, play a role in the development of IBS 
(Sykes et al. 2003). Somatization is frequently associated 
with anxiety and depression, and explains the frequent 
extra-intestinal symptoms, such as musculoskeletal 
complaints, urinary symptoms, sexual symptoms, head-
aches, and constant fatigue observed in IBS patients 
(North et al. 2004; Zimmerman 2003).

IBS IS CAUSED BY DYSFUNCTION OF THE 
BRAIN-GUT AXIS
IBS has been generally considered to be caused by 
alterations in the brain-gut axis, which constitutes 
the enteric nervous system and the gut wall in the 
periphery, the central nervous system (CNS), and the 
HPA axis (Fichna & Storr 2012). Brain-gut interac-
tions play crucial roles in the pathophysiology of most 
pain-related FGIDs, especially in IBS (Mayer & Tillisch 
2010). The bi-directional communication between the 
gut and the CNS is based on the neural, endocrine, and 
neuroimmune pathways (Fichna & Storr 2012). The 
neural network for control of digestive functions forms 
a hierarchic four-level integrative organization: (1) the 
enteric nervous system; (2) the pre-vertebral sympa-
thetic ganglia, where peripheral reflex pathways are 
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induced by preganglionic sympathetic fibers from the 
spinal cord; (3) the ANS (parasympathetic and sympa-
thetic systems); and (4) higher brain centers. Distur-
bances occurring at every level of this neural control, 
affect not only modulation of gastrointestinal motility, 
secretion, and immune functions, but also perception 
and emotional response to visceral events (Mulak & 
Bonaz 2004).

The responsiveness of the CNS is altered in IBS 
patients (Mayer & Tillisch 2010). The gut has the 
capacity to function as an autonomous organ. However, 
in normal conditions, the gut and the CNS talk to each 
other through the ANS, represented by the sympathetic 
and parasympathetic nervous system. A particular role 
in modulating gut functions is played by the emotional 
motor system, which consists of the limbic system and 
some paralimbic structures (Mulak & Bonaz 2004). The 
brain receives a constant stream of interoceptive input 
from the gastrointestinal tract, integrating this infor-
mation with other interoceptive information from the 
body, as well as with contextual information from the 
environment, and then sends an integrated response 
back to various target cells within the gastrointestinal 
tract. This system is optimized to assure homeostasis 
of the gastrointestinal tract during physiological per-
turbations, and to adapt gastrointestinal function to 
the overall state of the organism. In health, the major-
ity of interoceptive information reaching the brain is 
not consciously perceived, but serves primarily as 
input to autonomic reflex pathways. In patients with 
functional abdominal pain syndromes, conscious per-
ception of interoceptive information from the gastroin-
testinal tract or recall of interoceptive memories of such 
input, can occur in the form of constant or recurrent 
discomfort or pain. This is often related to alterations 
in ANS output and with emotional changes (Mayer & 
Tillisch 2010). 

As noted above, IBS is a stress-related disorder. Actu-
ally it is evidenced that the components of the stress 
response system, some of which are also components 
of brain-gut axis, such as hippocampus, amygdala, ANS 
and HPA axis, play important roles in the pathogenesis 
of IBS. 

The hippocampus, amygdala, and prefrontal cortex 
undergo  stress-induced structural remodeling, which 
alters behavioral and physiological responses (McEwen 
2007). When vertebrates are exposed to chronic stress, 
a dichotomy appears in the morphology of different 
brain regions. Stress and depression are related to aber-
rant neuroplasticity in the amygdala: there is increased 
volume as well as increased dendritic arborization and 
synaptogenesis, maybe explaining the increased anxiety 
and fear that are often apparent in depressed patients 
(Khaleel et al. 2013; Tebartz van Elst et al. 2000). In 
contrast, chronic stress results in decreased volume and 
trophic and functional alterations as well as a loss of 
spines and dendritic branch points in the hippocam-
pus (Frodl et al. 2002; Bremner et al. 2000; Vyas et al. 

2002; Radley et al. 2006; Bergstrom et al. 2008; Bravo 
et al. 2009; Hageman et al. 2008; Magarinos et al. 1996; 
Magarinos et al. 1997; Hajszan et al. 2005), suggesting 
hypofunction of this structure. 

The ANS and HPA axis are commonly regarded as 
the major components of the stress response system in 
the vertebrates. Alterations of this complex system have 
been associated with a variety of anxiety-related psy-
chiatric disorders and stress-sensitive pain syndromes 
(Arborelius et al. 1999; Fichna & Storr 2012). 

The ANS is a major mediator of the visceral response 
to central influences, such as psychological stress 
(Tougas 2000). Central and psychological factors, which 
are well known to be linked to functional gut symp-
toms, are capable of altering autonomic balance as well. 
Depression and anxiety have been shown to be associ-
ated with lower parasympathetic activity, both in female 
IBS patients and healthy controls (Jarrett et al. 2003).

The amygdala is involved in regulating the ANS. The 
functions of the central nucleus of the amygdala (CeA) 
and medial nucleus amygdala are related to the ANS 
(Swanson 2000). The CeA facilitates the autonomic 
response to stress (Applegate et al. 1983). Anatomical 
studies indicate that the CeA provides major output 
to autonomic regions which mediate not only fear and 
anxiety-related behaviors but also enteric processes 
such as gastric emptying and colonic motility (LeDoux 
et al. 1988; Lyubashina 2004). Furthermore, the hippo-
campus also has a role in regulating the ANS (Zheng et 
al. 2013b; Kim & Yosipovitch 2013; Holsen et al. 2012).

Regulation of the HPA axis is critical for adapta-
tion to environmental changes. The hippocampus and 
amygdala play key roles in regulating the HPA axis 
(Miller & O’Callaghan 2002). The HPA axis controls 
the stress response through interactions among the rel-
evant factors and hormones, which are discussed in the 
next section. These responses regulate some important 
body processes such as digestion, immunity, and mood. 
The evidence has demonstrated increased HPA axis 
responses in IBS (Chang et al. 2009). Inhibitory inputs 
from the amygdala and excitatory inputs from the hip-
pocampus project to inhibitory neurons in the paraven-
tricular nucleus (PVN) and hypothalamus (Herman et 
al. 2002; Herman et al. 2004). Thus it is implied that 
increasing input from the amygdala or decreasing 
input from the hippocampus, as occurs during chronic 
stress, enhances the net activity of the HPA axis. This 
dysregulation of the HPA axis is responsible for many 
negative effects of chronic stress on brain functioning 
and behavior (Chrousos & Gold 1998; Chrousos 2000).

It is showed in animal models that there is a link 
between the central pathways mediating stress and anx-
iety and the mechanisms regulating the gastrointestinal 
sensitivity. A key component of this link is the amyg-
dala, specifically the CeA, which is known for its role 
in the regulation of emotional behavior and the expres-
sion of fear and anxiety (Greenwood-Van Meerveld et 
al. 2001). 
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The hippocampus may also be involved in several 
aspects relevant to the IBS symptom atology, such as 
pain, anxiety, and stress (Bannerman et al. 2004; Kwan 
et al. 2005; McEwen 2007; Niddam et al. 2011). Chronic 
stress leads to alterations of the glutamatergic system, 
which may lead to dendrite retraction in hippocampal 
subfields  (Christian et al. 2011; McEwen et al. 2002).   
It was observed abnormal hippocampal glutamatergic 
neurotransmission in IBS patients, and inverse correla-
tion between glutamate-glutamine concentrations and 
emotional stress indicators (Niddam et al. 2011). It is 
possible that the observed hippocampal glutamatergic 
hypofunction could due to a generally impaired HPA 
axis tone, or it could represent compensatory mecha-
nisms of adaption to increased glucocorticoid feedback. 
Glutamatergic dysfunction is also an underlying cause 
of depression (Kallarackal et al. 2013).

IBS has been demonstrated to be associated with 
autonomic dysfunction, both cholinergic and adrener-
gic (Mulak & Bonaz 2004). The correct function of the 
ANS and its cross-talk with CNS are important factors 
preventing from IBS. An abnormal functioning of these 
brain-gut interactions has been described in IBS clas-
sically considered as a biopsychosocial model where 
stress plays a promoting role (Bonaz 2013). Distur-
bances at the ANS level, indicated by decreased para-
sympathetic and increased sympathetic activity and 
altered autonomic reflexes, often occur in IBS patients 
and account for the level of perception to gastrointesti-
nal stimuli (Azpiroz 2002; Jarrett et al. 2003; Spaziani et 
al. 2008). Vagal dysfunction is obvious in the constipa-
tion-predominant  IBS subgroup (Liu et al. 2013), and 
IBS patients have an abnormal autonomic response to 
painful stimuli to the colorectum (Fukudo 2013). Auto-
nomic dysfunction may also represent the physiological 
pathways accounting for many of the extra-intestinal 
symptoms present in IBS patients (Tougas 2000). In 
addition, autonomic responses can also directly or indi-
rectly modulate gut permeability, thereby changing the 
access of luminal factors, such as antigens and bacteria, 
to the gut immune system (Black 2002; Wood 2002).

The visceral organs, including that of the digestive 
and cardiovascular system, are mainly controlled by the 
ANS. Therefore gastrointestinal function is associated 
with cardiac function. For instance, heart rate variabil-
ity is now commonly used in gastrointestinal physiology 
to assess autonomic imbalances (Pellissier et al. 2010; 
Mazurak et al. 2012). IBS patients show an impaired 
cardiac sympathetic and vagal response to colonic stim-
ulation in response to flexible sigmoidoscopy (Cheng 
et al. 2013). Much evidence suggests that robust sym-
pathetic arousal is a normal feature of the cardiac auto-
nomic response to colorectal distention (Fukudo 2013). 
It is also showed that cardiovagal dysfunction is spe-
cifically associated with the constipation-predominant 
subgroup of IBS patients, whereas patients with diar-
rhea-predominant symptoms have evidence of sympa-
thetic adrenergic dysfunction (Aggarwal et al. 1994).

NEUROPLASTICITY RELATED-FACTORS 
AND HORMONES ARE IMPORTANT FOR 
IBS AND MOOD DISORDERS
HPA axis plays a critical role in neuroplasticity, which 
is closely associated with mood disorders, by its related 
factors and hormones, such as CRF, glucocorticoids 
and BDNF. The principle regulator of the HPA axis 
is CRF, which is produced in the PVN in response to 
stress and is an important target of negative feedback by 
glucocorticoids, functions as a neurotransmitter in the 
integration of behavioral and autonomic responses to 
stress (Jeanneteau et al. 2012; Koob 1999). Neuroplas-
ticity underlies our ability to adapt to stress. However, 
excessive exposure to stress can lead to maladaptive 
plasticity. Together with other important components 
of the stress system, such as glucocorticoids, which will 
be discussed later, CRF plays a central role in these neu-
roplastic changes (Regev & Baram 2014).

In the hypothalamic system, CRF stimulates the 
secretion of adrenocorticotropin, which stimulates the 
secretion of glucocorticoids from the adrenal cortex. 
Corticosteroids reach every organ through the circula-
tory system, thus enabling coordination between brain 
and body functions aimed at management of stress, 
recovery and adaptation (Ulrich-Lai & Herman 2009). 
CRF also responds to stress in the extra-hypothalamic 
systems (Cratty et al. 1995; Bao et al. 2008; Dunn & 
Swiergiel 2008; Fernandez Macedo et al. 2013). At the 
extra-hypothalamic level, CRF is present in different 
neuronal circuits and acts as a neuroregulator in the 
behavioral and emotional integration of environmen-
tal and endogenous inputs related to stress (Swanson 
et al. 1983; Fernandez Macedo et al. 2013). The baso-
lateral  amygdala  (BLA) that contains CRF-synthesiz-
ing neurons and participates during periods of stress, 
where an increment in CRF immunoreactive neurons 
during stress is observed, forms part of this extra-hypo-
thalamic circuit together with the hippocampus (Falco 
et al. 2009; Becker et al. 2007; Fernandez Macedo et al. 
2013). Early life stress can change methylation patterns 
in the genomic DNA, leading to permanent changes 
in gene expression in the brain. Hypomethylation of a 
critical cAMP response element in the CRF promoter, 
a region essential for CRF transcriptional activation, 
favors increased transcriptional responses to stress in 
MS rats (Chen et al. 2012), which is a model of IBS. 

CRF plays a particular role in the stress-related alter-
ations of gastrointestinal motility and sensitivity (Col-
lins 2001). CRF released into the PVN activates colonic 
motility, enhances visceral perception, and evokes neg-
ative emotion mainly through CRF subtype 1 receptors 
(CRF1) (Fukudo 2013). CRF in the brain and possibly 
in the gut is a plausible key molecular mediator of the 
pathophysiology behind stress-induced exacerbation 
of IBS symptoms (Fukudo 2013). It was observed that 
the intravenous injection of CRF in IBS patients led to 
exaggerated motility of the colon and increased visceral 
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pain sensitivity compared to healthy controls (Fukudo 
et al. 1998), whereas administration of a non-selective 
CRF receptor antagonist ameliorated these responses 
(Lembo et al. 1996; Sagami et al. 2004).

Dysregulation of CRF plays a very important role 
in the  depression  genesis and development, sus-
tained elevation of CRF induced by stress may be the 
chief  factor  for  depression (Gao et al. 2009). Depres-
sion is characterized by the HPA axis, which is thought 
to participate in the development of depressive symp-
toms (Nemeroff 1996; Pariante & Miller 2001). The 
HPA axis changes are believed to be secondary to the 
hypersecretion of the CRF. Depressed patients show 
increased concentrations of CRF in the cerebrospinal 
fluid, with elevated CRF mRNA and protein expres-
sion in the PVN of the hypothalamus being revealed 
in postmortem studies and elevated levels of circulat-
ing cortisol (Arborelius et al. 1999; Nemeroff 1996). 
Besides the hypothalamic system, it is evidenced that 
there is a relationship between dysregulation of CRF/
CRF1 extra-hypothalamic signaling and depression 
(Fernandez Macedo et al. 2013). The hippocampus and 
the BLA are important brain regions of CRF action in 
depression (Fernandez Macedo et al. 2013). Consider-
able evidence suggests that CRF is hypersecreted in 
depression (Nemeroff 1996; Nemeroff 1992; Keck 2006; 
Arborelius et al. 1999), and central (intracerebroven-
tricular) administration of CRF to laboratory animals 
leads to a spectrum of behaviours strikingly similar 
to those of the depressive syndrome (Nemeroff 2002). 
Since depression is a manifestation of decreased neuro-
plasticity (Zheng et al. 2014), the link between CRF and 
depression implies the relationship between CRF and 
decreased neuroplasticity.

The dysregulation of CRF and the decreased corti-
costeroid function in depressed patients may be cor-
rected by antidepressant treatment (Holsboer 2000; 
Pariante & Miller 2001; Kim et al. 2006). For example, 
increased concentrations of CRF in cerebrospinal fluid 
have been reported in depressed patients (Banki et al. 
1987). Additionally, the normalization of elevated CRF 
concentrations in cerebrospinal fluid has been reported 
after successful treatment of depression by fluoxetine 
(De Bellis et al. 1993).

Although categorised as different nosological enti-
ties, depression and anxiety frequently co-occur. Jacob 
et al. even concluded that mixed conditions are more 
common than pure depression or pure anxiety (Jacob et 
al. 1998). Besides depression, alterations in central CRF 
signaling pathways have also been implicated in the 
pathophysiology of anxiety (Keck 2006; Binder & Nem-
eroff 2010). CRF has a critical role in the comorbidity of 
anxiety/depression and IBS. Some research showed that 
involvement of the CRF1 in both the colonic and anxio-
genic responses to stress may have clinical relevance in 
the comorbidity of anxiety/depression and IBS (Mon-
nikes et al. 2001). The CRF-dependent involvement of 
the amygdala in the induction of anxiety-like behavior, 

visceral hypersensitivity, altered bowel habits and other 
common feature of IBS has been confirmed in animal 
studies (Tache et al. 2002; Myers & Greenwood-Van 
Meerveld 2007; Myers & Greenwood-Van Meerveld 
2010; Venkova et al. 2010). Both the hypothalamic and 
extra-hypothalamic CRF systems play important roles 
in both psychiatric disorders and IBS (Lowry & Moore 
2006; Bravo et al. 2011).

Glucocorticoids, the final product of HPA activation, 
are also key regulators of stress responses. The CeA 
indirectly activates the HPA axis and increases gluco-
corticoid secretion via subcortical regions, which relay 
on PVN (Feldman & Weidenfeld 1998). Interestingly, 
the amygdala is an important target for glucocorticoids. 
Glucocorticoids increase expression of CRF in the CeA 
and potentiate autonomic responses to chronic stress. 
Glucocorticoid infusion into the CeA does not affect 
HPA activation acutely but may play a feed-forward 
role to potentiate HPA responses to stress (Smith & Vale 
2006). Evidence showed that elevated corticosterone 
level affected the amygdala and significantly increased 
brain activation in response to colorectal distension in 
rats (Johnson et al. 2010), and cortisol was elevated in 
all IBS subgroups (diarrhea predominant, constipated, 
and alternators) in humans (Dinan et al. 2006).

Glucocorticoid receptor (GR) is believed to be 
important in the regulation of the response to stress 
when endogenous levels of glucocorticoids are high 
(Juruena et al. 2004). Stress significantly reduced 
expression of GRs in the amygdala, hippocampus, 
prefrontal cortex, and nucleus accumbens (Abush & 
Akirav 2013). It is demonstrated that methylation of the 
GR gene is increased following water avoidance stress, 
a new model for sustained visceral hyperalgesia in rats 
that resemble IBS sequelae, while expression of the GR 
gene is decreased in the amygdala  (Tran et al. 2012). 
Deficient maternal care in rats increases GR promoter 
methylation leading to decreased expression in the hip-
pocampus, a recognized target for glucocorticoid feed-
back (Meaney et al. 2007).

Glucocorticoids play an important role in the eti-
ology of depression. It is broadly accepted that stress 
triggers the activation of the HPA axis and induces the 
brain to be exposed to corticosteroids, affecting neu-
robehavioral functions with a strong downregulation of 
hippocampal neurogenesis, which is a major risk factor 
for depression (Zheng et al. 2013b).

Brain derived neurotrophic factor (BDNF), a stress- 
and activity-dependent factor, is a critical cytokine in 
neuronal survival, morphogenesis, and plasticity. Envi-
ronmental conditions guide neural networks to better 
adapt to the environment through BDNF regulation. 
BDNF secretion can be regulated by stimuli related 
to neuroplasticity change. BDNF is involved in many 
activities modulated by the HPA axis. For example, 
BDNF expression is regulated by stress-responsive 
corticosteroids, and increased glucocorticoid exposure 
induces a reduction in BDNF level. The interaction 
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between BDNF and corticosteroids plays a key role in 
the environmentally mediated vulnerability to psycho-
pathology (Zheng et al. 2013b). Additionally, recent 
studies have shown a role for CRF in this regard. It 
seems that CRF does have a role to play in determining 
BDNF control of dendritic spines (Bennett & Lagopou-
los 2014). BDNF is important for ANS function (Zheng 
et al. 2013b).

Most of the circulating BDNF is produced in the 
brain and passes through the blood-brain barrier 
(Zheng et al. 2013b). Chronic restraint stress leads to 
decreases in BDNF mRNA and protein in some regions 
of the brain such as the CA3 region of the hippocam-
pus, but increases in other regions such as the BLA. The 
most likely cause of these changes is provided by the 
stress initiated release of glucocorticoids, which read-
ily enter neurons and alter gene expression of BDNF 
(Zheng et al. 2013b; Bennett & Lagopoulos 2014; Gray 
et al. 2013). Nevertheless, many studies have shown 
that peripheral BDNF could be used as a biomarker of 
mood states, and that serum BDNF level is a biomarker 
for depression (Zheng et al. 2013b). Decreased serum 
and hippocampus BDNF levels, reduced hippocampal 
volume and neurogenesis, CA3 dendritic retraction and 
decrease in spine density, as well as amygdala neuron 
hypertrophy, constitute latent vulnerability traits 
to depression (Blugeot et al. 2011). This suggests that 
BDNF level in the serum is consistent with that in the 
hippocampus, and contrary to that in the amygdala, in 
stress response. Incensole acetate was demonstrated 
to exhibit an antidepressive-like effect. This effect was 
concomitant to reduced serum corticosterone levels, 
dose-dependent down-regulation of CRF and up-regu-
lation of BDNF transcripts IV and VI expression in the 
hippocampus (Moussaieff et al. 2012).

Although one report showed that anxious patients 
with recent trauma had significantly higher BDNF 
levels (Hauck et al. 2010), some other reports showed 
that BDNF levels in anxious patients were lower than 
in participants without anxiety (Dell’Osso et al. 2009; 
Maina et al. 2010; Strohle et al. 2010; Dos Santos et al. 
2011; Wang et al. 2011). The elevated BDNF levels may 
result from stress generating for fear extinction modu-
lators which act or may act through BDNF (Andero & 
Ressler 2012). And in the long run, BDNF levels may 
be reduced in anxiety. Although it would be useful to 
clarify the relationship further, BDNF is also a potential 
biomarker of anxiety (Suliman et al. 2013).

Though some findings are inconsistent (Yu et al. 
2011; O’Sullivan et al. 2011), it is evidenced that BDNF 
level in IBS resembles that in depression, where serum 
and hippocampus BDNF levels are decreased. For 
example, besides IBS, MS is also a model of depression 
(El Khoury et al. 2006), suggesting that BDNF level in 
IBS resembles that in depression. BDNF level is signifi-
cantly decreased in the hippocampus of MS rats (Aisa et 
al. 2009; Lippmann et al. 2007). Wistar rats were sepa-
rated from their mothers  for 3h per day during post-

natal days (PND) 10 to 15. By PND60, the expression 
levels of BDNF and its receptor TrkB in the cerebral 
cortex were attenuated (Lee et al. 2012).

NEUROPLASTICITY IS DECREASED IN IBS
Depression is a disorder of decreased neuroplasticity 
(Zheng et al. 2013b). Besides depression, some other 
psychological disorders which IBS is commonly comor-
bid with, such as anxiety and somatization, are also 
associated with decreased neuroplasticity (Domingos 
da Silveira da Luz et al. 2013; Bhang et al. 2012). Thus it 
is suggested that decreased neuroplasticity leads to the 
comorbidity of depression/anxiety and IBS, and IBS is 
closely associated with decreased neuroplasticity. 

There is much evidence for this theory. Although 
increased gray matter density in the hypothalamus of 
IBS patients (Blankstein et al. 2010), increasing evi-
dence supports the association of chronic pain with 
accelerated gray matter atrophy in IBS (Robinson et al. 
2011). In a previous study in IBS patients, the decreased 
gray matter density in the anterior/medial thalamus in 
IBS patients may have been related to subclinical levels 
of anxiety or depression (Davis et al. 2008). Physi-
ological analysis of IBS patients revealed decreased gray 
matter density (thickness) in widespread areas of the 
brain, such as the medial prefrontal cortex, ventrolat-
eral prefrontal cortex, and left dorsolateral prefrontal 
cortex (Seminowicz et al. 2010). Another study showed 
that female IBS patients have lower volumes in bilateral 
superior frontal gyrus, bilateral insula, bilateral hip-
pocampus, bilateral amygdala, bilateral middle orbital 
frontal gyrus, left cingulate, left gyrus rectus, brainstem, 
and left putamen, while higher volume was found for 
the left postcentral gyrus (Labus et al. 2014). A research 
result indicates that neural degeneration in the myen-
teric plexus connected with inflammatory changes may 
play a role in the pathogenesis of IBS (Tornblom et al. 
2002). 

CONCLUSIONS
Though the pathophysiology of IBS is complex and 
multifactorial, neuroplasticity may have a role in it. 
The digestive system is controlled by the nervous 
system, mainly through the ANS. On the basis of the 
above discussion, it is concluded that: (1) stress influ-
ences the HPA axis by increasing CRF, and then leads 
to increased glucocorticoid, which decreases BDNF; (2) 
this pattern of increased glucocorticoid and deceased 
BDNF induces decreased neuroplasticity; and (3) 
decreased neuroplasticity influences the ANS, and then 
may lead to IBS. Figure 1 presents an integrative patho-
physiologic model that shows the possible associa-
tion between depression/anxiety and IBS. This model 
is not intended to be complete, but is rather meant to 
emphasize and connect certain interesting evidence 
pointing to this association. In addition, some studies 
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pointed out that CRF is also play an important role in 
neuroplasticity (Regev & Baram 2014). Neuroplasticity 
is a fundamental mechanism of the adaptation of the 
nervous system to intrinsic or extrinsic stimuli, and the 
digestive system is controlled by the nervous system. 
Thus, increased neuroplasticity may also be beneficial 
against the development of IBS.

Since increased neuroplasticity represents enhance-
ment of the nervous system, as well as the adaptation 
of the digestive system to intrinsic or extrinsic stimuli, 
non-neuropsychiatric symptoms patients with IBS 
may benefit from treatments that can increase neuro-
plasticity. For example, IBS patients may benefit from 
cognitive therapy, relaxation exercise, and treatment 
with centrally targeted medications such as anxiolyt-
ics, selective serotonin reuptake inhibitors (SSRIs), and 
low doses of tricyclic antidepressants in the treatment 
of IBS (Mulak & Bonaz 2004). Although the effect of 
benzodiazepines on neuroplasticity is complex (Zhao 
et al. 2012), cognitive therapy, exercise, and medication 
of SSRIs and tricyclic antidepressants increase neuro-
plasticity (Boku et al. 2013; Zheng et al. 2013b; Park & 
Bischof 2013).

In order to improve IBS treatment, more research 
on the role of the factors and mechanisms related to 

neuroplasticity should be conducted. Some common 
factors, such as microRNA-132, may play roles in both 
neuroplasticity and cardiovascular function (Zheng 
et al. 2013a). Similarly, the factors and mechanisms 
involved in IBS and neuroplasticity could be a promis-
ing field for further study.

Fig. 1. An integrative pathophysiologic model that associates depression/anxiety with IBS. Decreased neuroplasticity plays a role in 
pathogenesis of the comorbidity of depression/anxiety and IBS. Abbreviations: CRF, corticotropin-releasing factor; ANS, autonomic 
nervous system; BDN F, brain-derived neurotrophic factor; IBS, irritable bowel syndrome.
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