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Abstract INTRODUCTION: Calcium transport pathways are key factors for understanding 
how changes in the cytoplasmic calcium concentration are associated with neuro-
protection because calcium is involved in the onset of death signaling in neurons. 
OBJECTIVES: This study characterized the effects of 17β-estradiol and IGF-1 on 
voltage-activated and stretch-activated calcium channels in rat cultured cortical 
neurons. 
METHODS: The whole-cell patch-clamp technique, using a voltage steps protocol 
or by applying positive pressure into the micropipette, was used on 7–10 day 
cultured neurons from a Wistar rat cortex, and pharmacological characterization 
was performed on these neurons. 
RESULTS: Both 17β-estradiol and IGF-1 inhibited the currents mediated by L-type 
voltage-activated calcium channels, although the IGF-1 effects were lower than 
those of 17β-estradiol. The effect of both hormones together was greater than the 
sum of the effects of the individual agents. Unlike IGF-1, 17β-estradiol decreased 
the current mediated by stretch-activated channels. The inhibition of the classical 
receptors of these hormones did not affect the results. 
CONCLUSION: Both hormones regulate voltage-activated calcium channels in a 
synergistic way, but only 17β-estradiol has an inhibitory effect on stretch-activated 
calcium channels. These effects are not mediated by classical receptors and may 
be relevant to the neuroprotective effects of both hormones because they dimin-
ish calcium entry into the neuron and decrease the possibility for the onset of 
apoptotic signaling.
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INTRODUCTION
Calcium homeostasis can be modified by several 
membrane transport mechanisms to maintain the 
cytoplasmic concentration of calcium, which exhibits 
a transient elevation pattern, a key factor for signal-
ing processes (Lin et al. 2007). Additionally, this strict 
regulation guarantees an effective control of death pro-
cesses (Dupont et al. 2007). However, moderate calcium 
increases have been associated with neuronal protection 
(Bickler & Fahlman 2004), making calcium transport 
regulation a key factor for explaining the mechanisms 
involved in neuroprotection and neurotoxicity (San-
chez et al. 2010). 

17β-estradiol, (E2) considered as a neuroprotec-
tor (Amantea et al. 2005; Ba et al. 2004; Bagetta et al. 
2004; Bains et al. 2007; Behl 2002a; Behl 2002b; Brann 
et al. 2007; Garcia-Segura et al. 2001; McCullough & 
Hurn 2003; Gonzalez et al. 2008), is synthesized mostly 
in the ovaries as well as locally at different tissues by 
the action of the aromatase enzyme on other steroids. 
E2 is a key factor in cell regulation processes such as 
growth, maturation and proliferation (Audesirk et al. 
2003). Its classical receptors (Nilsson et al. 2001), ERα 
(estrogen receptor α) and ERβ, which belong to the 
ligand-activated transcription factor family (Carpenter 
& Korach 2006; Katzenellenbogen 1996), are expressed 
in neurons (Shughrue et al. 1997). In addition, E2 can 
act more rapidly through the activation of membrane 
receptors, which are also expressed on neurons (Beyer 
et al. 2003; Ronnekleiv et al. 2007) and are coupled to G 
proteins (Qiu et al. 2003). 

Additionally, insulin-like growth factor I (IGF-1), a 
70-amino acid peptide with high homology to insulin 
and a receptor that belongs to the tyrosine kinase recep-
tor family (De Meyts & Whittaker 2002), has known 
neuroprotective action (Aperghis et al. 2004; Bilak & 
Kuncl 2001; Carro et al. 2001; Carro et al. 2003; Frago 
et al. 2002; Hung et al. 2007) in addition to its role in 
neural development (Russo et al. 2005). IGF-1 synthesis 
occurs mainly in the liver under the influence of growth 
hormone, but many other tissues also produce IGF-1 
locally. IGF-1 is highly concentrated in the brain in the 
prenatal stage (Popken et al. 2004; Rotwein et al. 2002) 
and during times of aggression (Hodge et al. 2007; Hol-
zenberger et al. 2000). The IGF-1 receptor is broadly 
expressed in neurons (El-Bakri et al. 2004; Eshet et al. 
2004) and its activation can modify electrophysiological 
cell activity (Nunez et al. 2003).

The action of E2 and IGF-1 are related (Quesada 
& Micevych 2004), particularly with respect to their 
neuroprotective activity (Azcoitia et al. 1999; Cardona-
Gomez et al. 2001; Mendez et al. 2005b); even more, 
both hormones are involved in neural plasticity and 
neural development stimulation (Aberg et al. 2006; 
Cardona-Gomez et al. 2000b; Garcia-Segura et al. 2000; 
Kipp et al. 2006; Yu et al. 2004) and may modify the 
cytoplasmic calcium concentration by direct or indirect 

actions on ion channels (Bence-Hanulec et al. 2000; 
Blair & Marshall 1997). Likewise, their effects poten-
tiate and feed back into each other (Cardona-Gomez 
et al. 2002b; Mendez et al. 2003; Mendez et al. 2006; 
Topalli & Etgen 2004; Varea et al. 2010), their recep-
tors coexist (Cardona-Gomez et al. 2000a) and regu-
late reciprocally (Cardona-Gomez et al. 2001) and the 
actions of both hormones converge on two intracellular 
transduction pathways, MAPK (ERK) and PI3K/PKB 
(Cardona-Gomez et al. 2002a; Cardona-Gomez et al. 
2002b; Garcia-Segura et al. 2006; Mendez et al. 2005a; 
Garcia-Segura et al. 2010).

This study investigated the effect of these two hor-
mones on two types of calcium ion channels, L-type 
voltage-activated calcium channels (LVACs) and 
stretch-activated channels (SACs), both expressed in 
neurons. Voltage-gated calcium channels mediate the 
influx of calcium in response to membrane depolariza-
tion; these channels have been extensively studied in 
excitable cells and are classified in different categories 
(L, N, P, Q, R and T) based on their electrophysiological 
characteristics (Catterall 2000). LVACs are most com-
monly expressed in neurons and can be identified by 
their dihydropyridine (DHP) sensitivity (Triggle 2006); 
the other types of high-voltage-activated channels are 
also expressed in rat neuron, but LVACs are responsible 
for the majority of the Ca2+ currents activated by volt-
age in these cells (Xiang et al. 2012) and they have been 
related to neuroprotective mechanisms (Hu et al. 2013; 
Ilijic et al. 2011; Wu et al. 2011b).. 

On the other hand, SACs are stimulated by mem-
brane stretching and have been found in every cell, 
including neurons (Gottlieb et al. 2004; Martinac 2004). 
They are classified into three categories according to 
their permeability: potassium permeable, chloride per-
meable and non-selectively cation permeable (Sackin 
1995). The non-selective cation-permeable channels 
have variable permeability to calcium and could be 
important transport pathways for this ion in some cells, 
such as in cardiac myocytes (Wang et al. 2009). These 
channels are blocked by Gd3+ ions at low concentra-
tions (Hamill & McBride 1996). LVACs and SACs have 
been associated with death signals (Lang et al. 2007), 
and this study shows evidence of their regulation by E2 
and IGF-1. 

MATERIALS AND METHODS
Animals and cell cultures
Neuronal cell cultures were obtained from female 
Wistar rats after 18 days of pregnancy, which were 
fecundated under controlled conditions. A minimum 
number of animals were used, and their management 
was in accordance with international ethics statutes and 
approved by the Bioethics Committee of the Universi-
dad Tecnológica de Pereira. The rats were anesthetized 
with ketamine (800 mg/kg) and xylazine (5 mg/kg) and 
sacrificed by cervical dislocation. The fetuses were sur-
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gically extracted and decapitated. The cerebral cortexes 
were dissected and cut in small pieces in Hank’s solution 
and then digested with a 0.25% trypsin-EDTA solution 
for 15 minutes; the obtained material was mechanically 
disaggregated after a thorough washing. The cells were 
resuspended in DMEM (Dulbecco’s Modified Eagle’s 
Medium) supplemented with L-glutamine (2 mM) and 
10% fetal bovine serum. Viable cells were counted on 
a hemocytometer, resuspended to a 250,000 cell/mL 
density and then seeded on plates previously covered 
with 0.1% poly-L-lysine. The next day, the medium was 
changed to Neurobasal medium (Gibco, Grand Island, 
New York) with a 2% B27 supplement (Gibco, Grand 
Island, New York), L-glutamine (2 mM) and antibiot-
ics (penicillin 100 IU/mL, streptomycin 100 μg/mL and 
neomycin 200 μg/mL). All cultures were maintained 
under controlled conditions (37 °C, 95% air and 5% 
CO2). Every 3 days, a third of the medium volume was 
changed to preserve cell adhesion.

Media and chemicals
All chemicals and solutions were obtained from Sigma-
Aldrich (St. Louis, USA) unless otherwise stated. In the 
electrophysiological experiments, the standard external 
solution was composed of the following (mM): NaCl 
140, CsCl 5, CaCl2 2, MgCl2 1, HEPES 15 and glucose 
5, with a pH of 7.4 at 25° C adjusted with NaOH. The 
standard pipette solution was composed of the follow-
ing (mM): CsCl 110, K+-gluconate 20, NaCl 20, CaCl2 4, 
BAPTA 20 (free Ca2+ concentration of 102 nM, calcu-
lated using Maxchelator software), MgCl2 4, HEPES 15 
and glucose 5, with a pH of 7.4 at 25 °C adjusted with 
NaOH. The following pharmacological agents were 
added to the external solution immediately before 
electrophysiological recordings when it was necessary: 
tetrodotoxin (TTX, 1 μM), tetraethylammonium (TEA, 
5 mM), nifedipine (10 μM), GdCl3 (10 μM), E2 (between 
1 pM and 100 nM), IGF-1 (between 1 nM and 1 μM), 
ICI182780 (10 μM) and JB1 (10 nM). In experiments 
where the combined effects of these agents were evalu-
ated, agents were added simultaneously to the solution 
at the same concentrations as when added individually. 
H89 (10 μM), PD98059 (10 μM), L-NAME (5 mM), 
wortmannin (100 nM) and chelerythrine (2.5 μM) were 
added 2 hours before the appropriate experiments.

Electrophysiological recording
The whole-cell patch-clamp technique was used in all 
recordings. The data acquisition, experimental con-
trol and signal analysis were performed using pClamp 
10.2 software and an Axopatch 200B amplifier with a 
CV203BU headstage and the Digidata 1440A interface 
(Axon Instruments, Inc.). The process was visualized 
with an inverted microscope (TE2000U, Nikon, Tokyo, 
Japan). Selected neurons were bathed in the appro-
priate solution for each experiment. Micropipettes 
of borosilicate glass were made immediately before 
experiments using a pipette puller (P-97, Sutter Instru-

ments, Novato, CA, USA); each pipette had a resistance 
between 5 and 10 MΩ. 

The pipettes were immersed in the solutions and 
manipulated until the surface of a cell was reached. 
Each cell was selected for its morphological appear-
ance and its degree of adhesion to the plate. After the 
pipette reached the cell, negative pressure was applied 
to make a high-resistance seal between the cell and the 
pipette. The cellular capacitance was measured before 
the experiments to normalize currents. Step proto-
cols were used for the voltage clamp experiments; the 
steps were applied from a holding potential of –80 mV 
and increased by 10 mV for test potentials from –80 
to +80 mV from for 300 ms at 0.5 Hz. To record the 
stretch-activated currents, an increase in intracellular 
pressure was created by applying a controlled positive 
pressure to a holding potential of –80 mV. All of the 
experiments were repeated at least six times.

Statistics
The data analysis was performed using the analysis 
tools available in pClamp 10.2 software and in SPSS 
software. If possible, an unpaired Student´s t-test analy-
sis was made; otherwise, the correspondent non-para-
metric test was used. The results are shown as the mean 
± standard error of the mean (SEM). All statistical tests 
were two-tailed and a p-value <0.05 was considered 
significant.

RESULTS
Figure 1 shows the recordings obtained from a neuron 
subjected to the conditions described above plus the 
addition of sodium channel (TTX, 1 μM) and voltage-
activated potassium channels (TEA, 5 mM) inhibitors. 
The step protocol produced a depolarization-depen-
dent calcium current (Figure 1A), which was com-
pletely inhibited by nifedipine, a dihydropyridine that 
selectively inhibits LVACs (El Beheiry et al. 2007; Sten-
gel et al. 1998) at the concentration employed (10 μM) 
(Figure 1B); this effect was completely reversible (data 
not shown). Figure 1B shows the corresponding cur-
rent-voltage relation curve, which displays the maximal 
current obtained at the different recorded voltages; the 
curve has the typical behavior of a LVAC: closed chan-
nels at potentials lower than –60 mV and reverse poten-
tials around +40 mV. 

To evaluate the responses, several doses of E2 
(between 1 pM and 100 nM, Figure 1C) and IGF-1 
(between 1 nM and 1 μM, figure 1E) were used within 
the range in which these agents have neuroprotective 
effects (Garcia-Segura et al. 2010; Mendez et al. 2006; 
Zhao & Brinton 2007). Figures 1B shows the typical 
effects and the I-V curves under the effect of E2 (20 
nM, the lower concentration to elicit the maximal 
response); this hormone decreased the current magni-
tudes at every recorded voltage (Figure 1C,G). IGF-1 
(250 nM) also had inhibitory effects as shown in figure 
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1E, G; nevertheless, it had a sig-
nificantly smaller effect than E2 
at most voltages (Figure 1G). 
Simultaneous application of 
both hormones at the same con-
centrations, resulted in a stron-
ger effect than the sum of the 
individual effects (Figure 1G). 
All the effects described above 
were reversible almost immedi-
ately following the clearance of 
the pharmacological agents as 
shown in Figure 1C and 1E.

Currents evoked by apply-
ing increased intrapipette pres-
sure were recorded to evaluate 
the presence of SACs currents 
in neurons. The neurons were 
subjected to treatment with 
TTX and TEA at the previously 
mentioned doses and nifedip-
ine at 100 μM, which were used 
to suppress voltage-activated 
sodium, potassium and calcium 
currents respectively, that might 
have interfered with the desired 
recordings. Figure 2A shows a 
typical recording of a neuron 
subjected to a pressure of 40 cm 
H2O, the maximal response 
occurred without compromis-
ing cell vitality or the integrity 
of the patch-clamp. The pres-
sure induced a current that was 
identical at different voltages 
(512 ± 34 pA) and was com-
pletely inhibited with 10 μM of 
GdCl3, a feature of SAC currents 
(Figure 1A). Treatment with E2 
attenuated the magnitude of the 
current (Figure 2C, D). 20 nM 
E2 was the lower concentration 
to elicit the maximal response 
(Figure 2D). On the other hand, 
IGF-1 had no effect on the posi-
tive pressure-induced currents 
(Figure 2E), even at concentra-
tions as high as 1 μM.

All experiments were 
repeated in the presence of 
ICI182780 (10 μM) (Tocris, 
Bristol,UK), a classical estrogen 
receptor inhibitor; JB1 (10 nM), 
a competitive inhibitor of the 
binding of IGF-1 with its clas-
sical receptor; H89 (10 μM), a 
PKA (protein kinase A) inhibi-
tor; PD98059 (10 μM), a MAPK 

Fig. 1. A. Representative recordings of basal LVACs currents. Only the –80, –60, –50, –40, –30 
and –20 (mV) recordings are shown. B. I–V relationship obtained from the recording of 
several cells (n is indicated in each case) in control conditions and under the effect of 
10μM nifedipine; note the nearly complete inhibition of the currents. C. Recordings of 
the effect of 20 nM E2 on LVACs currents at –20 mV; note the nearly complete reversibility 
of the effect. D. E2 dose-response curve in which 20 nM was the minimal dose with the 
maximal response. E. Recordings of the effect of 250 nM IGF-1 on LVACs currents at –20 
mV; the effect was almost completely reversible. F. IGF-1 dose-response curve, in which 
250 nM was the minimal dose with the maximal response. G. I–V relationship obtained 
from the recordings of several cells at different voltages as indicated. The currents were 
normalized to capacitance (13.6 ± 2.4 pF). There are significant differences in all recordings 
between –40 mV and +20 mV (p<0.05).
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(mitogen-activated protein 
kinase) inhibitor; L-NAME (5 
mM), a NOS (nitric oxide syn-
thase) inhibitor; wortmannin 
(100 nM), a PI3K (phosphati-
dyl inositol 3 kinase) inhibitor; 
or chelerythrine (2.5 μM), a 
PKC (protein kinase C) inhibi-
tor. No significant differences 
in the recorded currents were 
observed under these different 
conditions (Table 1).

DISCUSSION
This study evaluated the effects 
of two neuroprotective hor-
mones, E2 and IGF-1, on two 
calcium pathways in rat primary 
cultured neurons.

The results show that both 
hormones have an inhibitory 
effect on LVACs, but not on 
other high-voltage-activated 
calcium currents. IGF-1 had a 
significantly lower effect. These 
findings are consistent with 
previous reports, which have 
shown that IGF-1 (Blair & Mar-
shall 1997) has inhibitory effects 
on high-voltage-gated calcium 
channels from rat hippocampal 
neurons and that E2 inhibits 
LVACs from sensory neurons 
(Lee et al. 2002), hippocampal 
neurons (Brewer et al. 2009) and 
smooth myocytes (Ullrich et al. 
2007). In contrast, other studies 
have shown stimulating effects 
of E2 on LVACs from hippo-
campal neurons (Wu et al. 2005; 
Sarkar et al. 2008). These effects 
contrast our findings, which can 
be explained by different experi-
mental circumstances, different 
doses or specific effects in a cell 
type. The doses employed here 
were those derived from the 

Fig. 2. A. Recording of 40 cmH2O intrapipette positive pressure-induced calcium currents at 
–60 mV under control conditions and under the effect of 10 μM Gd3+; note the complete 
abolition of the current. B. Pressure-response relationship; pressures larger than 40 cmH2O 
disrupted the membrane patch. C. Recording of SACs currents under the effect of 20 μM E2 
and 1 μM IGF-1; note the nearly complete reversibility of the effect of E2 and the absence 
of effects of IGF-1. D. E2 dose-response curve in which 20 nM was the minimal dose with 
the maximal response. E. Comparison of the effects of E2 and IGF-1 on SACs currents. All 
of the currents were normalized to capacitance (13.6 pF ± 2.4 pF). * denotes significant 
differences with control (p<0.05) and ** denotes significant differences (p<0.05) with 
control and the * marked bar. 

other studies (Cardona-Gomez et al. 2001; Cardona-
Gomez et al. 2002b; Garcia-Segura et al. 2006; Mendez 
et al. 2005a; Sanchez et al. 2011). 

Only E2 had significant inhibitory effects on SACs, 
which were identified in this study because of their 
activation after membrane stretching (induced by the 
application of positive pressure to the micropipette) 
and because of their sensitivity to low concentrations of 
Gd3+. Moreover, IGF-1 did not affect SAC current, even 
at high concentrations, but the reasons are unclear. It is 

dose-response curves performed for each agent and 
they are in the range of those employed in other studies 
(Di Liberto et al. 2012; Hernandez-Fonseca et al. 2012; 
Hilton et al. 2006; Huang et al. 2013; Nixon & Simpkins 
2012; Smejkalova & Woolley 2010; Sribnick et al. 2009; 
Wu et al. 2011a; Yu et al. 2012). There was an additive 
effect on LVACs when both hormones were applied 
simultaneously, which suggests the existence of cross-
talk mechanisms between the two signaling pathways; 
this synergistic method of action has been shown in 
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important to consider these channels when evaluating 
the neuroprotective and neurotoxic effects of certain 
drugsbecause of their expression in neurons (Takahashi 
& Gotoh 2000) and their potentially high conductance 
(Sackin 1995; Martinac 2004), which may be respon-
sible for significant calcium currents. 

All the previously described effects occurred in a 
very short period of time, suggesting that both hor-
mones utilize a mechanism of action other than a 
genomic pathway, which requires a longer period of 
time. The fact that the effects did not change even in 
the presence of inhibitors of classical receptors sug-
gests a direct action on the carrier protein or through 
a different type of receptor. Fast, non-genomic actions 
have been described for E2 through a membrane recep-
tor (Beyer et al. 2003; Ronnekleiv et al. 2007), and it 
is possible that both hormones can act directly on ion 
channels. Because non-genomic actions on neurons, 
neuroprotection included,have been associated with 
PKA, PKC and NOS activation (Segars & Driggers 
2002; Vasudevan & Pfaff 2008) and because MAPK 
and IP3K are the classical pathways involved in IGF-1 
intracellular effects and in the synergistic effects of both 
hormones (Bondy & Cheng 2004; Blair & Marshall 
1997; Fernandez et al. 2007; Mendez et al. 2006), the 
cells were pretreated with specific inhibitors for PKA, 
PKC, MAPK, IP3K and NOS. None of these agents 
modified the effect of E2 or IGF-1 on LVACs or SACs, 
which eliminates these signaling pathwaysas a mecha-
nism that explains the findings in the present study. 
Moreover, some authors have found that estrogens may 
activate glutamate receptors, in particular mGLUR2/3, 
which in turn can block LVACs in rat hippocampal neu-
rons (Boulware et al. 2005) and rat retinal ganglion cells 
(Robbins et al. 2003). However, this effect is mediated 
by PKA and the inhibition of the PKA pathway did not 
affect the action of E2 on LVACs. 

The effects found here could be mediated by another 
transduction mechanism, but the possibility that these 
two hormones act directly on the channels can not be 
ruled out; , since there is evidence of E2 acting directly 
on calcium channels(Ullrich et al. 2007), although 
at higher concentrations. Previously, our laboratory 

reported synergistic effects of E2 and IGF-1on the 
sodium calcium exchanger in rat cortical neurons 
(Sanchez et al. 2011); these effects were not mediated 
by classical receptors and promoted an intracellular 
calcium decrease, in a similar manner as the effects on 
LVACs and SACs that were found in this study. 

If these hormones affect calcium transport pathways, 
this mechanism could provide neuronal survival capac-
ity against harmful agents, by inhibiting calcium influx 
and leading to a decrease in intracellular levels of cal-
cium, avoiding the activation of the enzymatic cascades 
associated with cell death. (Sanchez et al. 2010). 

Pharmacological neuroprotection requires knowl-
edge about the regulation of cytoplasmic calcium levels 
and, in a similar manner, it is also essential to under-
stand calcium transportation mechanisms (Sanchez et 
al. 2010). Both LVACs and SACs are plausible targets 
of several neuroprotective agents according to the find-
ings of the present study, and therefore, the modula-
tion of these channels can be a useful strategy for the 
development of new perspectives on neuroprotection. 
Although the doses employed in the present study were 
higher than the plasma concentration for both hor-
mones, the effects described here are still relevant given 
that local and systemic concentrations are not necessar-
ily the same and the effects on neurons may be modi-
fied by the local environment. Further research needs to 
be conducted to clarify the significance of these effects 
in clinical neuroprotection.
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Tab. 1. Effects of several inhibitors on LVACs currents normalized at –20 mV, potential in which the maximal current was obtained, and on 
SACs currents, at –60 mV. Values are shown as the mean ± SEM. There are no significant differences in any of the comparative data groups 
with controls (p>0.05). LVAC: L-voltage-activated currents recorded at –20 mV and shown as pA/pF; SAC: stretch-activated currents recorded 
at –60 mV, shown as pA/pF; E2: 17β-estradiol; IGF-1: insulin-like growth factor 1. n = 6 in all cases.

Control ICI182780 JB1 H89 PD98059 L-NAME Wortmannin Chelerythrine

E2 LVAC –18.5±3.1 –20.7±4.6 –17.7±3.4 –19.6±4.5 –21.3±6.1 –20.1±3.9 –20.6±2.1 –18.2±4.6

SAC –12.9±2.7 –11±2.8 –9.9±4.6 –13±1.9 –12.3±3.9 –9.6±3.8 –11.9±4.9 –10.1±3.6

IGF-1 LVAC –26.6±4.8 –28.5±5.3 –29.6±4.6 –26.2±6.3 –36.1±4.7 –29.1±5.9 –30.8±4.8 –27.3±6.2

SAC –30.9±4.3 –29.6±6.6 –33.5±5.4 –30.9±4.5 –27±3.6 –31.5±3.7 –27.1±4.8 –34.4±2.6

E2 
+ IGF-1

LVAC –10.7±5.6 –9.5±2.1 –6.6±2.7 –8.9±4.6 –10.4±3.7 –12.8±4.9 –9.7±3.2 –10.2±3.1

SAC –11.5±5.2 –14.9±4.7 –13.7±3.5 –12.7±5.7 –10.8±2.2 –12.6±2.2 –13.6±6.3 –11.8±5.5
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