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Abstract Group of estrogen pollutants, where the highest estrogen activity is reported at 
estradiol, is characterized by the fact that even at very low concentrations have 
potential to cause xenoestrogenic effects. During exposure of excessive amounts 
of estradiols may be produced undesirable effects resulting in the feminization of 
males of water organisms. The presence of estradiols in drinking water implies 
also a risk for the human population in the form of cancers of endocrine systems, 
abnormalities in reproduction or dysfunctions of neuronal and immune system. 
Currently, the research is focused mainly to uncover the relationship between 
the estrogen receptors binding affinity with an estrogen response element and 
estradiol. In this review we summarized facts about molecular biological prin-
ciples of β estradiol-estrogen receptor complex binding with estrogen response 
element and its successive effect on cancer genes expression.
 

Abbreviations:
E2  - β estradiol
EDC  - Endocrine disrupting compounds
ER  - Estrogen receptor
ERE  - Estrogen response element
HSP 90  - Heat shock protein 90
RA  - Retinoic acid
LBD  - Ligand binding domain
DBD  - DNA binding domain 

AF1  - Hormone-independent transcriptional activation 
function domain

AF2  - Ligand-dependent transcriptional activation domain
MAPK  - Mitogen-activated protein-kinase
SRC  - Steroid receptor coactivator
LSD1 - Lysine-specific demethylase 1
CCAR1  - Cell cycle apoptosis regulator 1
DBC1 - Deleted in breast cancer 1
CARM1  - Coactivator-associated arginine methyltransferase 1
SERMs  - Selective estrogen receptor modulator
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INTRODUCTION

Estrogenic compounds related to Endocrine Disrupt-
ing Compounds (EDC) belong to pollutants gaining the 
increasing environmental and social concerns in recent 
years because of their endocrine-disrupting property 
and other serious side effects on human health (Liu et al. 
2004; Ballesteros-Gomez et al. 2009; Swedenborg et al. 
2009). With the rapid economy development, a variety 
of EDCs have been discharged into the aquatic environ-
ment (Jeffries et al. 2011), received in large amounts in 
the urine and excreta of livestock (Tang et al. 2013) but 
also in the urine of people that contains residues of con-
traceptives, whose consumption increases every year 
(Preda et al. 2012; Qiang et al. 2013). Estrogenic pollut-
ants, among which the highest activity was reported at 
β estradiol (E2) (Boulay & Perdiz, 2005; Heldring et al. 
2007) are characterized by the fact that even at very low 
concentrations, the long-term exposure can cause xen-
oestrogenic effects (Lange et al. 2012; Qin et al. 2013b). 

Sewage treatment plants currently do not have a way 
how to effectively break down these substances from the 
water. Although a certain amount of these substances 
remains bound in the sludge (Gagne et al. 2013), the 
rest is released into the receiving waters of the sewage 
treatment plant (Nie et al. 2012). Their adverse effects 
are caused through the endocrine system by mimick-
ing the action of natural hormones (Bovet et al. 2009). 
As EDCs disrupt the actions of endogenous hormones, 
they may induce abnormal reproduction, stimulation 
of cancer growth, dysfunction of neuronal and immune 
systems (Howdeshell et al. 2008; Jenkins et al. 2012; 
Macon & Fenton, 2013; Lee et al. 2013; Tang et al. 2013). 
Estrogens provide gene transcription and signaling of 
plenty processes in cell in a variety of tissues, the bone, 
breast, and endometrium, through binding and acti-
vation of estrogen receptors (ERs) (Ceylan et al. 2012; 
Wolinska-Witort et al. 2012; Komm & Mirkin, 2013). 
Because breast cancer is the most common cancer in 
women, both in developed and developing countries 

Fig. 1. Scheme of basic molecular biological way of estradiol physiological function, where E2 stays for estradiol, ER for estrogen receptor, 
HSP 90 for heat shock protein 90, CoR for coregulators and ERE for estrogen response element.
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(van Duursen et al. 2013), the issue of reproductive 
toxicants is a major scientific challenge for human 
health (Bechi et al. 2013). The aims of this review are 
to summarize the facts about the molecular biologi-
cal principles of estradiol pathways in complex with 
estrogen receptor, it is binding with estrogen response 
element and its effect on target genes involved in cell 
proliferation.

MOLECULAR BIOLOGY OF ESTRADIOL

Currently, research covering this issue is applied espe-
cially to clarify the relationship between estradiol 
(Figure 1), estrogen response element (ERE) and estro-
gen receptor (ER), a member of hormone receptors of 
the nuclear receptor family (Gronemeyer et al. 2004; 
Srinivasan et al. 2013). There are known two subtypes 
of estrogen receptors ERα and ERβ (Muyan et al. 2012; 
Chieffi & Chieffi, 2013; Oh & Chung, 2013) encoded by 
distinct genes, Esr1 and Esr2, respectively (Billon-Gales 
et al. 2011). These steroid transcription factors remain 
nowadays the most informative biomarker in breast 
cancer diagnosis (Patani et al. 2013), because more 
than three quarters of breast tumors are ERα-positive 
(Dunnwald et al. 2007). ERs are composed of the poly-
peptide chain and located in the cell cytoplasm in mul-
tiprotein complex containing the molecular chaperone 
HSP 90 (heat shock protein 90, Figure 1) (Cheng et 
al. 2012). Ligand binding triggers the conformational 
changes that lead to dissociation and receptor dimer-
ization (Jeong et al. 2012). The proliferative or pro-sur-
vival action of estrogens is antagonized in most cases 
by retinoic acid (RA) (Ombra et al. 2013). Activated 
receptor-ligand complex is replaced into the nucleus 
of cell, where interactions with coactivators (CoA) or 
corepressors (CoR) of transcription are undergoing 
(McDonnell & Wardell, 2010; Coughlan et al. 2013).

PRINCIPLES OF E2-ER-ERE BINDING

Because of steroidal hormone properties, estrogens can 
pass through the phospholipid membranes of the cell to 
realize the binding with ER (Oh & Chung, 2013; Qin et 
al. 2013a). ER proteins are composed of six functional 
domains labeled as A through F (Ascenzi et al. 2006; 
Han et al. 2007). The E ligand-binding domain (LBD) 
provides ligand specificity to the receptor and contains 
ligand-dependent transcriptional activation function 
(AF2) (MacPherson et al. 2009; Jiang et al. 2010), local-
ized in its conformationally dynamic region (Figure 2). 
It was found that ERs conformation changes are leading 
to a helix 12 realignment with helices 3, 5–6 and 11 and 
thereby forming a lid on the LBD for the surrounded 
E2 (Figure 2) (Endler et al. 2012). Agonist ligands stabi-
lize a receptor conformation that is optimal for efficient 
interaction with coactivators and the direct (or indirect) 
binding to cis-acting elements and thereby triggering of 
a transcriptional activation (Heldring et al. 2007; Chen 

et al. 2009; Billon-Gales et al. 2011). The C domain 
responsible for targeting the receptor to DNA possesses 
two zinc fingers forming a helix-loop-helix motif and 
primarily functions in binding of the receptor to the 
hormone response elements. Zinc finger contains a P 
box for identification of the specific DNA sequence. 
Second zinc finger includes at its base a D box. Its main 
role is the recognition of the distance between hexam-
ers constituting the ERE in the promoter of the target 
gene (Puzianowska-Kuznicka et al. 2013). In the N-ter-
minus, ER contains a hormone-independent transcrip-
tional activation function domain (AF1) (Alimirah et 
al. 2012), regulated by growth factors acting through 
the MAPK signaling pathway (Kato et al. 1995). Both 
AF domains recruit a range of coregulatory protein 
complexes to the DNA-bound receptor, altering the 
chromatin structure and facilitate recruitment of the 
RNA polymerase II transcription system (Heldring et 
al. 2007).

ER COREGULATORS

Transcription inhibition or enhancement is achieved 
by ligand-regulated coactivators and corepressors (Aust 
et al. 2013). Hundreds of potential coregulators with 
diverse functions, from histone modification and chro-
matin remodeling to RNA polymerase II recruitment 
and mRNA splicing, have been identified (Lonard & 
O’Malley, 2006). Corepressors are crucial regulators of 
ERα-mediated action, and that their loss could promote 
breast cancer development and resistance to endocrine 
therapy (Dobrzycka et al. 2003). To the novel coregula-
tors with a multitude functions belongs proline-, glu-
tamic acid-, and leucine-rich protein (PELP1) which 
expression is deregulated in hormonal tumors, and 
functions as a proto-oncogene, however, the mecha-
nism by which PELP1 promotes oncogenesis remains 
unclear (Gonugunta et al. 2011). In study by Kim et 
al. (2013) it was reported first evidence about protein 
CAC1, associated with LSD1, working as an ERα core-
pressor, implicating a potential antitumor target like 
Paclitaxel in ERα-positive breast cancer. Jeong et al. 
(2011) demonstrated that interactions with the protein 
acetyltransferase (TIP 60) are also one of the required 
coregulators for estrogen-induced transcription of a 
subset of ERα target genes in human cells. Coactivators, 
where among the best-characterized belong the steroid 
receptor coactivators (SRC) or p160 family (SRC-1, 
SRC-2, SRC-3), work as a scaffold proteins for other 
coregulators (Jeong et al. 2012). Data published by 
Karmakar et al. (2009) indicate that the closely related 
p160 coactivators are not functionally redundant in 
breast cancer cells because they play gene-specific 
roles in regulating mRNA and protein expression, and 
they therefore are likely making unique contributions 
to breast tumor genesis. Among important coactiva-
tors belong also cell cycle and apoptosis regulator 1 
(CCAR1), deleted in breast cancer 1 (DBC1) (Yu et 
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al. 2011) and coactivator-associated arginine methyl-
transferase 1 (CARM1) (Coughlan et al. 2013; Zeng et 
al. 2013) important co-activators for estrogen-induced 
gene expression and estrogen-dependent growth of 
breast cancer cells. 

MOLECULAR PATHWAYS INVOLVING 
E2-ER COMPLEX BINDING TO ERE

The proliferative effect of estrogens is exerted via 
genomic and non-genomic pathways (Abbondanza 
et al. 2012). Non-genomic pathway is not as well 
understood as the genomic mechanism, but has been 
observed in many tissues. Probably signaling cascades 
are initiated via second messengers affecting ion chan-
nels or increasing nitric oxide levels in the cytoplasm, 
leading to a physiological responses without involving 
gene regulation (Heldring et al. 2007). In the genomic 
pathways in the endocrine glands as a mammary gland, 
proliferating cells express low levels of ERα, which is 
down regulated through a ubiquitin proteasome path-
way, in the presence of β estradiol by direct binding to 
ERE (Cirillo et al. 2013). ERs can also be recruited to 
genomic DNA by indirect by tethering through other 
DNA-bound transcription factors, including members 
of the activating protein-1 (AP-1) and cAMP response 
element-binding protein family members creating a 

heterodimers (Heldring et al. 2011). The last of genomic 
pathways works through ER phosphorylation. Mitogen 
activated protein kinase (MAPK) is known to directly 
phosphorylate ER alpha at serine 118 in a ligand-inde-
pendent  manner (McGlynn et al. 2013). As a crucial 
target or ligand-independent pathway is AF1 region 
that forms the target for receptor phosphorylation. In 
addition the AF1 and AF2 regions can interact with 
different coactivators and corepressors, triggering gene 
transcription separately or synergistically (Acconcia & 
Kumar, 2006).

 GENES EXPRESSED IN CONNECTION 
WITH ER-INDUCED CANCER

Tumor development occurs when a buildup of genetic 
mutations in genes, mostly controlling cell growth and 
division or the damaged DNA repairment, allows cells 
to grow and divide uncontrollably and to form a tumor-
ous tissue subsequently. For example tumor suppres-
sive p53 gene encodes a same name protein stopping 
tumor growth. Mutations in p53 gene cause a disorders 
with potential to develop soft tissue cancers like breast 
cancer (Chang et al. 2013). Many genes involved in cell 
growth, growth factor signaling, and cell cycle control 
are estrogen responsive (e.g. fos,  myc,  myb,  cdc25a, 
A2, p53 and stk15). Inappropriate expression or activ-
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ity of a number of these genes has been implicated in 
breast cancer (Hodges et al. 2003). At in vitro study by 
Shahmoradgoli et al. (2013) significantly higher levels 
of  PPP1R15B  mRNA expression in luminal (ERα-
positive) and normal-like subtypes of breast tumors 
were observed. High levels of Runx2 expressed in some 
invasive breast cancer cell lines were observed by Fer-
rari and colleagues, but intriguingly,  Runx2  was also 
expressed in the ER negative population (Ferrari et al. 
2013). Genetic alterations in the TopBP1 gene influenc-
ing the risk of breast cancer were also observed (Forma 
et al. 2013). ROS1 mRNA expression connection with 
decreased ER expression was confirmed by Eom et al. 
(2013). Their real-time PCR results showed that ROS1 
expression was decreased in patients with the increased 
histologic grade and increased mitotic counts. Among 
genes that are commonly a part of a ERα-positive breast 
tumor signature belong GATA-3 (Wilson & Giguere, 
2008; Gaynor et al. 2013), FOXA-1 (Schneider et al. 
2006), XBP-1 (van’t Veer et al. 2002) and TFF3 (Chen 
et al. 2011). In study of Lattrich et al. (2013) it was 
mentioned also the connection between luminal breast 
tumors exerted by unspecific activation of ERα and 
proliferative effects accompanied by overexpression of 
cyclin B1, PR and PS2 genes. E2-induced Bcl-2 transcrip-
tion effects on demethylation of lysine driven by the 
LSD1 demethylase, producing reactive oxygen species 
(ROS) with consequent influence on DNA strands were 
observed (Perillo et al. 2008). Estradiol was proved as 
a downregulator of ST8SIA1 mRNA expression as well 
as ST8SIA1 core promoter activity linked with luminal 
breast cancer (Bobowski et al. 2013). There exist far 
more genes involved in progression of cancers, con-
nected with ER observed by different methods, but now-
adays the largest discussion arises according to genes 
BRCA1 and BRCA2, whose mutations are highly linked 
with different types of breast tumors (Meric-Bernstam 
et al. 2013). The absence of ER in BRCA1/2 (69.1/19 % 
of patients, according to (Meric-Bernstam et al. 2013)) 
often induced breast tumors deteriorates the benefits 
from hormonal therapy, but still sensitivity to cytotoxic 
treatment regimens remains (Brunello et al. 2013).

CONCLUSION 

β-estradiol as the most potent estrogen pollutant rep-
resents currently significant scientific challenge due to 
its endocrine-disrupting properties and other serious 
undesirable effects on health. Although the classical 
pathway of estradiol-ER direct binding to ERE has been 
known for quite long period of time, recently there 
were showed additional possible bindings in the inter-
action with proteins or after phosphorylation. Knowl-
edge of the molecular pathways of estradiol may help to 
develop increasingly efficient antitumor drugs, such as 
SERMs granting the possibility to selectively inhibit or 
stimulate estrogen-like actions in different tissues.
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