
To cite this article: Neuroendocrinol Lett 2012; 33(5):471–476

R
E

V
I

E
W

 
A

R
T

I
C

L
E

Neuroendocrinology Letters Volume 33 No. 5 2012

Analysis of fMRI time-series by entropy measures 

Pavol Mikoláš 1, Jan Vyhnánek 1, Antonín Škoch 2, Jiří Horáček 1

1  Prague Psychiatric Center, 3rd Faculty of Medicine, Charles University, Prague, Czech Republic 
2  Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental 

Medicine, Prague, Czech Republic

Correspondence to: Pavol Mikoláš, MD.
Prague Psychiatric Centre,
Ústavní 91, CZ–181 03 Praha 8 - Bohnice, Czech Republic.
e-mail: mikolas@pcp.lf3.cuni.cz

Submitted: 2012-06-15 Accepted: 2012-09-10 Published online: 2012-10-02

Key words:  approximate entropy;  block design;  brain;  computer simulation;  event related 
design;  humans;  information entropy;  magnetic resonance imaging;  methods; 
 mutual information;  neuroimaging;  resting state

Neuroendocrinol Lett 2012; 33(5):471–476 PMID: 23090262  NEL330512R01 © 2012 Neuroendocrinology Letters • www.nel.edu

Abstract Entropy is a measure of information content or complexity. Information-theoretic 
modeling has been successfully used in various biological data analyses including 
functional magnetic resonance (fMRI). Several studies have tested and evaluated 
entropy measures on simulated datasets and real fMRI data. The efficiency of 
entropy algorithms has been compared to classical methods based on the linear 
model. Here we explain and summarize entropy algorithms that have been used 
in fMRI analysis, their advantages over classical methods and their potential use 
in event-related and block design fMRI. 

Abbreviations:
ApEn  - approximate entropy
BOLD  - blood oxygen level-dependent
ER-fMRI - event-related fMRI
ERP  - event-related potential
fMRI  - functional magnetic resonance imaging
GLM  - general linear model
GRE  - generalized relative entropy
HPEI - Hilbert phase entropy imaging
HRF  - hemodynamic response function
IT  - inspection time
MI  - mutual information
ROC  - receiver operating characteristic
SNR  - signal-to-noise ratio
TFR  - time frequency representation

INTRODUCTION

fMRI (functional magnetic resonance imaging) is 
a well established experimental method in modern 
cognitive neuroscience that has dominated the 
field over the last two decades. Generally fMRI 
data have low amplitude and low signal-to-noise 

ratio (SNR). The need for extraction of reliable 
functional information has stimulated develop-
ment of specialized deterministic, statistical and 
informational algorithms (D’Esposito et al. 1999; 
Fuhrmann Alpert et al. 2007). In this review we 
focus on an alternative approach to fMRI analysis 
using information theoretic entropy measures.
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fMRI AND MECHANISM OF BOLD SIGNAL 

The fMRI detects decreases in deoxygenated hemo-
globin induced by increased blood flow in areas of 
increased neuronal activity. The shape of the detected 
blood oxygen level-dependent (BOLD) signal is repre-
sented by the hemodynamic response function (HRF) 
(Figure 1). HRF is an empirically defined model of the 
assumed response after a stimulus with a typical shape 
– a positive BOLD signal detected 4–5 sec after a stimu-
lus. This signal reaches its maximum in about 7 seconds 
(time-to-peak) and a baseline in approximately 20 sec-
onds (Malonek & Grinvald 1996). 

There are three frequently used paradigms for stim-
ulus related fMRI experiments – block design, event-
related design (ER-fMRI) and resting fMRI. In the 
block design, one condition is presented over a discrete 
period of time (in a ‘block’) in a repeated or continuous 
fashion. Resulting time-integrated signal is contrasted 
with the signal from blocks with different conditions. In 
ER-fMRI one or more conditions followed by a period of 
rest are presented in repeated fashion and the detected 
signal reflects the response to an individual condition 
rather than a time-integrated response (Donaldson & 
Buckner 2001). This approach is suitable for infrequent 
or complex stimuli that cannot be presented in block 
paradigms. Another kind of experimental design is 
the no-stimulus mode, or “resting state” (Raichle et al. 
2001) where subjects are asked to rest with their eyes 
closed and engage in mind wandering. Data analysis 
then focuses on detection of organized auto-correlated 
resting-state networks (Biswal et al. 1997; Greicius et al. 
2003). Analysis of the resting-state has been main focus 
of recent interest. The range of methods for its analy-
sis has been expanding, and the development of new 
tools to explore relationships between brain regions is 
expected.

DEFINITION OF ENTROPY

Entropy quantifies the amount of uncertainty in a 
system. In other words, entropy is a measure of ran-
domness, or regularity, where regularity is given by low 
entropy values and randomness by high entropy values. 
Entropy was first introduced by Shannon (Shannon 
1948) in the form of the so-called Shannon entropy (see 
below). Since then various entropy measures have been 
developed which quantify the uncertainty of systems by 
different means.

Entropy is a suitable relative measure for compar-
ing stochastic biological data which are in the form 
of sampled real-valued signals (i.e. real-valued time 
series). Unlike moment statistics (mean and variance), 
entropy does not depend on absolute values of the 
signal. Instead it reflects the regularity in the distribu-
tion of values, or in some cases it measures regularity 
of consistency within data. Entropy has been success-
fully applied in biological science for analysis of various 

physiologic systems such as heart-rate variability, hor-
mone secretion, negative feedback strength, EEG, MRI, 
and now fMRI (Palus. 1996; Pincus et al. 1999; Pincus. 
2006; Stam. 2005). 

ASSUMPTIONS FOR ENTROPY ANALYSIS 
OF fMRI

One advantage of entropy measurement over conven-
tional methods is that it requires few assumptions about 
the nature of hemodynamic responses, underlying 
neural processes or data itself (de Araujo et al. 2003). 
A common assumption in the classical linear transform 
model is that the fMRI responses are proportional to 
local mean neural activity averaged over a period of 
time (Boynton et al. 1996). This infers that the relation-
ship between the stimulus and HRF is linear, in other 
words more intense stimulation produces stronger 
response (Worsley & Friston. 1995). This was shown 
not to be true for short stimulation ER-fMRI paradigms 
(Vazquez & Noll. 1998). Another common assump-
tion is that the hemodynamic response function has a 
fixed shape. However, it has been estimated that there 
is considerable variation in HRF over different regions 
in individual subjects, across cognitive task paradigms 
and also between subjects (Miezin et al. 2000). The only 
assumptions for BOLD analysis using entropy are made 
concerning the number of system states (eg. activation 
and rest) and the statistical independence of time-series 
(Sturzbecher et al. 2009).

ALGORITHMS OF ENTROPY ANALYSIS IN 
fMRI

In order to apply some entropy measures upon a real-
valued series, N discrete intervals (or amplitude levels) 
Ik=1..N are selected so that every value from a series 
belongs to some interval Ij (Figure 2). We define the 
probability pk that a value from a series X belongs to 
k-th interval Ik: 

 
seriesofvaluesallNo

IwithinseriesofvaluesNo
=p k

k .
.

Shannon entropy quantifies the randomness with 
which the values are distributed into intervals Ik . 

Shannon entropy H of a series X of length N is 
defined as: 

( ) ( )k

N
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Intuitively, Shannon Entropy is high if values of a 
series X cover intervals Ik rather uniformely and low if 
values from a series X belong to only a few intervals 
Ik. E.g. if all values from a series belong to an interval 
Ik , then pk=1 and H(X)=0 which is the lowest possible 
value of H(X). This fits with the fact that the series is 
not random at all. 
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De Araujo et al. (2003) were first to use Shannon 
entropy to analyze fMRI time-series. Visual flashing 
light and bilateral motor (finger tapping) stimuli were 
presented to 9 healthy volunteers in block and ER 
manner. The results of block paradigm were analyzed 
by cross-correlation coefficient mapping with a boxcar 
reference function. ER fMRI results were analyzed by 
two independent methods: cross-correlation between 
each voxel’s time-course and a lagged gamma function; 
and Shannon entropy dependent on time. Entropy was 
calculated over two different time-windows, reflecting 
activation and rest. Statistical maps were obtained by 
correlating entropy values with a simulated sawtooth 
function reflecting alternating stimulus and rest time-
windows. Window parameters were optimized for anal-
ysis of visual and motor paradigms. Shannon entropy 
was shown to be an effective method of ER-fMRI 
analysis, having several advantages over classical cross-
correlation, such as better consistency with decreasing 
signal-to-noise ratio and model independency.

This approach was extended by Sturzbecher et al. 
using Tsallis entropy (Tsallis. 1988). For a series X of 
discrete values the Tsallis entropy of order q is defined as:
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where q is a parameter which influences the charac-
teristics of the measure. For q→1 Tsallis entropy tends 
to follow the pattern of Shannon entropy. For other 
values the interpretation is not clear. As in the case of 
Shannon entropy, in this measure low values of entropy 
correspond to series with values distributed among 
fewer intervals while high values of entropy correspond 
to series with values distributed randomly among high 
number of intervals.

Tsallis entropy was calculated for two different time-
windows (activation and rest). The method was tested 
on simulated data and real ER-fMRI data (visual and 
motor paradigm) using several combinations of input 
parameters and compared to general linear model using 
receiver operating characteristic (ROC) curves. For 
simulated HRFs Tsallis entropy was more stable with 
both changing signal-to-noise ratio and HRF delays 
than the general linear model (GLM). It was also more 
sensitive in detecting activation than Shannon entropy 
(Sturzbecher et al. 2009; Tedeschi et al. 2004).

A similar approach was introduced by Cabella et 
al. (2009). Authors analyzed ER-fMRI simulated and 
real data using generalized Kullback-Leiber distance 
Dq, also referred to as the generalized relative entropy 
(GRE). ER BOLD signal time series were divided into 
two time-windows W1 and W2 reflecting periods of 
signal and rest respectively. Dq represents the dis-
tance between probability functions for the two states. 
Calculation of Dq requires two input parameters: L is 
the number of amplitude levels and q is the Tsallis q 
parameter. The choice of suitable input parameters was 

evaluated on simulated data with variable SNR by ROC 
curves. Real data from a finger-tapping paradigm were 
analyzed and statistical maps were constructed with 
different cutoff values. Authors concluded that Dq is a 
suitable method for fMRI analysis, although they have 
not compared the method to any conventional methods 
to investigate possible specific advantages or disadvan-
tages in robustness. 

Fig. 1. Assumed shape of the haemodynamic response function 
(HRF). It reaches peak at about 7s after the stimulus onset (time-
to-peak) and returns to baseline at about 20 sec. Note. Adapted 
from “Shannon entropy applied to the analysis of event-related 
fMRI time series“ by de Araujo et al. (2003). 

Fig. 2. ER-fMRI analysis by Shannon entropy. Each individual voxel‘s 
time series was divided into periods of stimulation (W1) and 
rest (W2). The amplitude of signal was divided into k intervals 
or possible system states (I0 - Ik) so that every amplitude level 
belongs to certain interval Ik. Entropy was calculated for each 
time-window separately. Note. Adapted from “Shannon entropy 
applied to the analysis of event-related fMRI time series“ by de 
Araujo et al. (2003). 
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Andino et al. (2000) developed the Renyi number 
– a combination of Renyi entropy and time frequency 
representation (TFR) of a signal in order to differenti-
ate between signal and noise in ER-fMRI, intracranial 
event-related potentials (ERPs) and EEG time-series. 
TFR divides the signal waveform into specific com-
ponents (or ‘energy spots’) according to the power 
spectral density. Activation is represented by a higher 
organization of the signal, and therefore fewer compo-
nents, whereas noise is represented by multiplicity of 
components. Renyi entropy is then applied over the 
basis of TFRs. In a sequential motor fMRI paradigm, 
this approach was shown to more effectively distinguish 
between activation and noise when compared to corre-
lation analysis. Moreover, RE was effective in detecting 
highly organized signals in the motor cortex during a 
simple index finger response task measured by ERPs in 
2 epileptic patients as well as in the detection of activa-
tion in a simple visual task measured by ELECTRA, an 
EEG inverse solution that estimates three dimensional 
potential inside the brain. 

Adaptive entropy rates quantify how precisely the 
k-th value can be predicted from past information. This 
approach was used by Fisher et al. (2001) to analyze 

motor, auditory and visual paradigms and compared 
to the general linear model (Worsley & Friston. 1995) 
and mutual information (Tsai et al. 1999). The study 
examined whether the values within the areas of inter-
est could be predicted better in the case of using the 
information of (a) k–1 previous values and (b) k–1 pre-
vious values combined with the additional information 
on experiment protocol. Both predictions were made 
by linear combinations of preceding signal values, resp. 
signal values and protocol values. Adaptive entropy 
rates were found to have minor advantages over GLM 
and mutual information (MI, see below) but authors 
suggest its potential where it is difficult to model signals 
á priori. 

In order to utilize phase information from fMRI 
time-series, Liao et al. (2010) proposed a new method 
called Hilbert phase entropy imaging (HPEI). It uses 
Hilbert phase transformation to determine phase dif-
ferences between task-state and control-state. If the 
voxel’s states are synchronized, the distribution of phase 
differences is a peaked distribution (Laird et al. 2002). 
Shannon entropy was used to distinguish between a 
peaked distribution with low entropy value and rather 
uniform distribution with high entropy value. 

Tab. 1. Summary of information theoretic entropy measures and mutual information in fMRI analysis.

Approach Principle Application
Comparison with standard 
methods

References

Shannon 
entropy

Quantifies the regularity with 
which values are distributed into 
intervals

ER-fMRI visual and 
motor paradigm

Better consistency with decreasing 
SNR than cross-correlation

(Cabella et al. 2009)

Tsallis 
entropy

Quantifies the regularity with 
which values are distributed 
into intervals, Shannon entropy 
modified by the q-parameter

ER-fMRI visual and 
motor paradigm, 
simulated data

More stable with changing SNR 
ratio than GLM, more sensitive in 
detecting activation than Shannon 
entropy 

(Sturzbecher et al. 
2009)

Adaptive entropy 
rates

Quantifies how precisely a value 
can be predicted from past 
information

ER-fMRI motor, 
auditory and visual 
paradigm

Minor advantages over GLM and 
mutual information

(Tsai et al. 1999), 
(Fisher et al. 2001)

General relative 
entropy

Calculates distance between 
probability functions in two time-
windows

ER-fMRI motor 
paradigm

no comparison (Cabella et al. 2009)

Hilbert phase 
entropy

Uses Hilbert phase transform 
to determine phase differences 
between task-state and control-
state

ER-fMRI and block-
design visual and 
motor paradigm, 
simulated data

More effective than SPM and Laird’s 
method (Laird et al. 2002)

(Liao et al. 2010)

Renyi number Entropy measure applied over 
time frequency representation of 
a signal

Sequential motor 
paradigm

Same effectiveness as correlation. 
May be applied to experiments 
where on/off conditions are not 
available

(Andino et al. 2000) 

Approximate 
entropy

Quantifies the regularity of 
patterns contained in a time-series

IT visual information 
processing task 

Novel approach to evaluate decrease 
in signal complexity associated with 
lifelong cognitive change

(Sokunbi et al. 2011)

Mutual 
information 

Quantifies the mutual dependency 
of two time series

Simulated data and 
real block-design 
motor paradigm

More stable threshold than cross-
correlation

(Tsai et al. 1999)

ER-fMRI - event related functional MRI; SNR - signal-to-noise ratio; GLM - general linear model; IT - inspection time
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The efficiency of HPEI was evaluated on simulated 
data with variable parameters of delay, signal-to-noise 
ratio and shape of HRF; and on real experiments using 
visual and motor paradigms. In all conditions HPEI 
was shown to be more effective than SPM and Laird’s 
method (Laird et al. 2002; Liao et al. 2010). 

A novel approach to evaluate entropy changes in 
temporal fMRI signal was used by Sokunbi et al. (2011). 
Authors investigated entropy changes associated with 
lifelong cognitive change. fMRI signal obtained from 40 
subjects during the inspection time (IT) visual infor-
mation processing task was analyzed by approximate 
entropy (ApEn). High ApEn values in regions espe-
cially involved in visual processing were associated with 
better cognitive performance.

Unlike other entropy measures used in fMRI analy-
sis (see above), ApEn is a suitable method for tempo-
ral fMRI analysis as it does not require differentiating 
time-series into time-windows. It is defined as:

 ( ) ( ) ( )rφrφ=rm,ApEn +mm 1−
φm(r) quantifies the similarity of sequences of length 

m and is defined as:

 
( ) ( ) ( )m
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where N is the length of the time-series and Ci
m is 

the number of patterns of length m which are similar to 
the pattern beginning at the position i.

ApEn quantifies the regularity of the patterns con-
tained in a time-series. More specifically it measures 
the probability that two randomly chosen patterns of 
length m+1 will be similar given that they were similar 
on their first m time points. In other words it measures 
the stability with which two similar patterns rest simi-
lar after extending them of one time point. Intuitively, 
if ApEn of the time-series is low, the similarity of pat-
terns is stable in time and therefore we can consider the 
series to be more regular than a series with high ApEn 
(Pincus et al. 1991). 

Mutual information (MI) is an information theo-
retic approach that calculates the predictability of 
one mutually dependent time series given the infor-
mation from using entropy. In ER-fMRI, MI is cal-
culated between fMRI temporal responses and the 
experimental. Therefore, unlike entropy measures, MI 
requires assumptions about the experimental proto-
col. This approach was introduced by Tsai et al. (1999) 
and further optimized by Tedeschi et al. (2005) in the 
form of GMI (generalized mutual information). GMI 
was shown to be effective in differentiating between 
between activation and rest in simulated and real fMRI 
data (motor paradigm). GMI was shown to be less 
prone to thresholding than cross-correlation. Use of MI 
was also extended to resting state fMRI functional con-
nectivity analysis in a range of algorithms. For example 
by calculating MI between the individual voxel time-
series (Benjaminsson et al. 2010) or the averaged sub-

region time-series (Lizier et al. 2011) or in sub-regions 
frequency domain (Salvador et al. 2007) this approach 
has advantage of detecting non-linearities and could be 
extended to account for directional relationships (Lizier 
et al. 2011). However, in general it was found to have 
minor benefits when compared to linear correlation in 
detecting resting-state functional connectivity (Hlinka 
et al. 2011). MI was not widely adopted for ER-fMRI 
analysis either. 

CONCLUSION

Entropy measures have been consistently shown to be 
suitable methods for evaluation of ER and temporal 
fMRI (Table 1). In comparison with standard methods 
they offer model independence and to some extent 
better outcomes with changing signal-to-noise ratio. 
However, these methods have not been widely adopted 
for ER-fMRI experiments, which may partially be due 
to high demands on computation power. On the other 
hand, suitability of entropy measures for emerging 
fMRI experimental paradigms including resting-state 
fMRI has not been fully investigated. 
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