Fetal macrosomia – an obstetrician's nightmare?

Saada Ahmed, Ewa Romejko-Wolniewicz, Julia ZAREBA-SZCZUDLIK, Krzysztof Czajkowski

Second Department of Obstetrics & Gynecology Warsaw Medical University, Poland

Correspondence to:	 <i>Trespondence to:</i> Julia Zaręba-Szczudlik, MD. Second Department of Obstetrics & Gynecology Warsaw Medical University, 00-315 Warsaw, Karowa Street 2, Poland. TEL: +48 22 5966 421; FAX +48 22 5966 487; E-MAIL: juliaszmed@wp.pl 		
Submitted: 2011-11-2	4 Accepted: 2012-03-20 Published online: 2012-04-25		
Key words:	fetal macrosomia; large for gestational age; cesarean section; birth injury; obstructed labor		

Neuroendocrinol Lett 2012; 33(2):149–155 PMID: 22592195 NEL330212A04 © 2012 Neuroendocrinology Letters • www.nel.edu

Abstract **OBJECTIVES:** Fetal macrosomia is defined as a fetus that is of large size for gestational age, i.e. equal to or greater than the 90th percentile of weight. There is some evidence of increased perinatal mortality and morbidity rates in cases of macrosomia.

> **DESIGN:** This is a retrospective study of patients with term pregnancy. We analyzed the deliveries of 508 infants born with birth weight \ge 4200 grams and considered them as a study group. The deliveries of newborns with birth weight less than 4000 g constituted the control group (330 cases). Maternal and neonatal medical records were retrospectively reviewed for clinical data.

> Setting: The study was conducted in Second Department of Obstetrics and Gynecology Warsaw Medical University from January 2004 to December 2007.

> **RESULTS:** Maternal age, parity, BMI and pregnancy weight gain were positively related to fetal macrosomia. Prolonged first stage of labor, cesarean section rate and increased blood loss were observed more frequent in macrososmia. There were no differences between both groups according to Apgar score and neonatal birth trauma. Macrosomia was observed more frequent in male fetuses. Our data showed that careful qualification to way of delivery let us achieve the same good outcome in macrosomia.

> **CONCLUSIONS:** Older obese multiparas are at increased risk of having macrosomic baby. The increased incidence of cesarean section in these women is due to cephalo-pelvic disproportion or obstructed labor. Macrosomia is more often in male fetuses.

Abbreviations:

Abbreviations:		FL	- femoral length
AC AFI BPD BMI cc DM EFW	- abdominal circumference - amniotic fluid index - biparietal diameter - body mass index - cesarean section - diabetes mellitus - expected fetal weight	GDM G1 GDM G2 HC IVH PGDM PIH PPH PROM	 gestational diabetes grade 1 gestational diabetes grade 2 head circumference intraventricular hemorrhage pregestational diabetes mellitus pregnancy induced hypertension prepregnancy hypertension premature rupture of membranes

INTRODUCTION

No general consensus exists on the definition of fetal macrosomia. Authors have variably defined it as birth weight greater than 4000, greater than 4500 or greater than 5000 grams, regardless of gestational age, or as large for gestational age. Fetal macrosomia is then defined as a fetus that is of large size for gestational age, i.e. equal to or greater than the 90th percentile of weight (Breborowicz 2010; Stotland et al. 2004). According to ACOG the term macrosomia refers to a fetus, which is beyond 4500 grams (Zhang et al. 2008). There is some evidence of increased perinatal mortality and morbidity rates in cases of macrosomia. A number of problems during delivery, such as prolonged duration of delivery, shoulder dystocia, an increased risk of cesarean section, and postpartum hemorrhage have been widely reported. High birth weight or fetal obesity is associated with increased risk of birth trauma during vaginal delivery, specifically including clavicle or humerus fractures and brachial plexus injury (Sanchez-Ramos 2002; Stotland et al. 2004). Newborn infants with weight greater than or equal to 4500 grams are at increased risk for neonatal morbidity, which include assisted ventilation and meconium aspiration. Genetic variance, excessive growth secondary to overweight mothers, excessive maternal weight gain during pregnancy, and gestational

Tab. 1. Newborn measurements.

Newborn measurements	Control group Mean ± SD [min-max] or n(%)	Study group Mean ± SD [min–max] or n(%)
Birth weight (g)	3268±162 [2020–3720]	4 392±183 [4200–5270]
Birth length (cm)	53.9±2.4 [47–61]	58.3±2.3 [53–64]
Head circumference (cm)	33.7±14.0 [30–38]	35.8±1.4 [31–40]
Abdominal circumference (cm)	31.3±1.8 [27–37]	34.9±1.5 [31–40]
Shoulder width (cm)	11.9±1.2 [9–15]	13.3±1.1 [11–16]
Chest circumference (cm)	32.7±1.5 [26–38]	36.1±1.3 [33–41]
Ponderal index	21.0±2.4 [14.8–34.0]	22.2±2.2 [16.5–30.4]
Percentile of weight:		
<5	9 (2.7%)	0
5–9	7 (2.2%)	0
10–24	49 (14.8%)	0
25–49	130 (39.4%)	0
50-74	116 (35.2%)	0
/5-89	19 (5.6%)	23 (4.5%)
>95	0	392 (77.1%)

or pregestational diabetes mellitus are possible reasons for large for gestational age fetuses (Herbst 2005; Steer 2004).

MATERIALS AND METHODS

This is a retrospective study of patients with term pregnancy who delivered in the Second Department of Obstetrics and Gynecology Warsaw Medical University from January 2004 to December 2007. We analyzed the deliveries of 508 infants born with birth weight \geq 4200 grams and considered them as a study group. The deliveries of newborns with birth weight less than 4000 g constituted the control group (330 cases). We restricted the study to women with singleton pregnancy who delivered alive baby at 37 completed gestational weeks or later. Maternal and neonatal medical records were retrospectively reviewed for clinical data. The mean newborn weight in control and study group was 3268±162 and 4392±183 grams respectively. The other newborn measurements are showed in Table 1. The highest birth weight was 5270g. Maternal measures included demographic and anthropometric information, previous reproductive history, complications during pregnancy, mean duration of first and second stage of labor, delivery route and maternal morbidity (namely postpartum hemorrhage, cesarean section, wound infection and perineal tears). Neonatal outcome measures consisted of Apgar score (at 1st and 5th min), fetal trauma and other neonatal complications.

<u>Statistics</u>

Statistical analysis was performed by using Chi square test, comparison of means, multifactor analysis of variance were used as appropriate to evaluate differences between continuous variables between groups. *p*-value <0.05 was accepted as indicating statistical significance.

RESULTS

There was no difference between both groups according to marital status and place of residence. Elementary education was less frequent in the study group. There was no difference in numbers of antenatal visits whereas the patients in the control group started their first visit earlier than in the study group (Table 2). We noted that mothers from the study group were older and taller than from the control group (Table 3). Body weight, BMI, weight gain during pregnancy, abdominal circumference and fundal height were statistically different between the groups (Table 3). Multiparous patients were found more often in the study group. There was no difference in history of abortion, prior preterm delivery and previous cesarean section (Table 4). Data of current pregnancy did not show significant difference between the two groups. The exceptions were found in a few conditions like intrahepatic gestational cholestasis, thyroid disease and threatened abortion which were

Tab. 2.	Socioeconomic	status and	antenatal	control
---------	---------------	------------	-----------	---------

Socioeconomic status and antenatal control	Control group Mean ± SD [min–max] or n(%)	Study group Mean ± SD [min–max] or n(%)	p-value
Marital status:			
singular	38 (11.5%)	53 (10.4%)	
married	283 (85.8%)	448 (88.2%)	ns
divorced	7 (2.1%)	6 (1.2%)	
widow	2 (0.6%)	1 (0.2%)	
Education:			
elementary	38 (11.7%)	28 (5.5%)	0 0000
medium	86 (26.4%)	183 (36.1%)	0.0008
high	202 (64.7%)	296 (58.4%)	
Residence place:			
city	182 (55.2%)	282 (55.5%)	ns
rural	148 (44.8%)	226 (44.5%)	
Number of			
up to 4 times	13 (4,2%)	18 (3.6%)	
5-8	102 (32.7%)	193 (39%)	ns
9-12	176 (56.4%)	257 (52%)	
>12	21 (6.7%)	27 (5.5%)	
Booking time	10.1±3.4	11.1±1.5	0.007
(week)	[4-32]	[6-33]	

more frequent in the control group. In addition those patients more often suffered from signs and symptoms of threatened preterm delivery managed with tocolysis, pessary and steroids (Table 5). The mean gestational age at delivery was older in the study group than in the control group (39.6±1.2 versus 38.9±1.2). There was no difference in labor induction. Normal vaginal deliveries were recorded more often in the control group whereas cesarean section was twice more often in study group, both in elective and cesarean section in labor. Emergency cesarean section was performed significantly more often in the control group. The most frequent indications for cesarean section in the study group were cephalo-pelvic disproportion, prolonged first and second stage of labor. First stage of labor in patients who delivered vaginally was significantly longer in the study group but there was no difference in the duration of other stages of labor in both groups. The premature rupture of membranes was observed more frequent in patients with fetal macrosomia but there was no significant difference in interval from PROM to delivery. Meconium stained amniotic fluid was detected more frequent in study group comparing to the control group. The mean blood loss during labor was 415.0±183.0 and 361.5±84.1 milliliters (*p*=0.0001) in the study and the control group respectively. Other perinatal complications were mentioned in Table 6 but no difference was recorded. Fetal measurements were done by ultrasound during the last week before delivery (Table 7). All measurements were clearly greater in macrosomic fetuses. Table 8 showed newborns' out-

Control group Study group N=330 N=508 Maternal Mean ± SD Mean \pm SD p-value characteristics [min-max] [min-max] or n(%) or n(%) 30.3±4.6 Age 29.6±4.6 0.033 [17-46] (years) [14-43] Weight 59.9±10.8 66±12.6 0.00001 (kg) [40-120] [45-130] Height 168.3±5.3 165.2±5.5 0.00004 (cm) 152-164 156-183 BMI 23.4±4.2 21.8 + 3.70.00001 16.7-44.6 (kg/m^2) 15.2-44.6 Pregnancy weight gain 14.0±5.0 17.2±6.1 0.00001 (kg) [1–30] [0-37] Abdominal circumference 100.5 + 7.9107.6 + 7.90.0001 [81-133] [93-138] (cm) Fundal height 38.9±4.4 0.0001 35.6±4.6 (cm) [28-43] [29-51]

Tab. 4. Obstetric history.

Tab. 3. General data.

Obstetric history	Control group N=330 Mean ± SD [min-max] or n(%)	Study group N=508 Mean ± SD [min-max] or n(%)	p-value
Number of pregnancies:			
1	155 (47.0%)	180 (35.4%)	0.02
2	111 (33.6%)	188 (37.0%)	0.02
3	40 (12.1%)	87 (17.1%)	
>3	24 (7.3%)	53 (10.4%)	
Number of mature deliveries:		242 (47.0)	
	193 (58.5%)	243 (47.8)	0.017
2	114 (34.5%)	195 (38.3%)	
3	18 (5.5%)	55 (10.4%)	
>3	5 (1.5%)	17 (3.3%)	
History of abortion:			
1	255 (77.3%)	358 (70.5%)	
2	57 (17.2%)	130 (25.5%)	ns
3	17 (5.2%)	15 (3%)	
4	1 (0.3%)	5 (1%)	
Prior preterm delivery:			
0	325 (98.5%)	492 (96.9%)	ns
1	5 (1.5%)	16 (3.1%)	
Previous cesarean section	21 (6.3%)	24 (4.7%)	ns

comes and their complications. The incidences of male babies were recorded more in macrosomic newborns (p=0.0001). The general condition of newborns in form of Apgar score in 1st and 5th minutes was similar in both groups. Neonatal hyperbilirubinemia and

infections were more frequent in the study group but neonatal hypoglycemia and admission to intensive care unit were more often in the control group. There was no significant difference in neonatal injuries and other neonatal diseases between both groups.

DISCUSSION

Macrosomia is still a problem in obstetric practice. The incidence of macrosomia in general population ranges from 6 to 14.4% depending on authors and definitions (Sukran *et al.* 2004). We analyzed the frequency of macrosomia in our Department in 2004 and the rate of macrosomia was 7.7% (Malinowska-Polubiec *et al.* 2004). There are many maternal risk factors that are associated with this obstetric complication. Identification of such factors in pregnancy will enable prediction and prevention of complications related to macrosomia. In our study socioeconomic status was not one of these factors. Maternal pre-pregnancy weight, height, weight gain during pregnancy, age and parity are all positively associated with neonatal birth weight. Around

Tab. 5. Data of current pregnancy.

Data of current pregnancy	Control group n (%)	Study group n (%)	<i>p</i> -value
Hospitalization rate: 1 >1	22 (6.7%) 14 (4.2%)	41 (8.1%) 9 (1.8%)	ns
Threatened abortion	31 (9.4%)	24 (4.7%)	0.012
Cervical insufficiency: cervical sutures pessary without sutures/pessary	0 19 0	2 7 2	0.0016
Oral tocolysis Intravenous tocolysis Steroids	15 18 12	14 6 6	ns 0.0006 0.0314
РРН	12 (3.6%)	16 (3.1%)	ns
PIH	17 (5.2%)	20 (4%)	ns
DM: GDM G1 GDM G2 PGDM	42 (12.7%) 4 (1.2%) 5 (1.5%)	58 (17.6%) 9 (1.8%) 9 (1.8%)	ns ns ns
Intrahepatic cholestasis	17 (5.2%)	12 (2.4%)	0.043
Polihydroamnion	1 (0.3%)	3 (0.6%)	ns
Oligohydroamnion	2 (0.6%)	3 (0.6%)	ns
Anemia	53 (16.1%)	67 (13.2%)	ns
Genital tract infection	21 (6.4%)	50 (9.8%)	ns
Urinary tract infection Other infections	19 (5.8%) 14 (4.2%)	33 (6.4%) 35 (6.9%)	ns ns
Hyperthyroidism Hypothyroidism Goiter	5 (1.5%) 15 (4.5%) 5 (1.5%)	0 1 (0.2%) 1 (0.2%)	0.00001

Delivery data	Control group Mean ± SD [min-max] or n(%)	Study group Mean ± SD [min-max] or n(%)	p-value
Gestational age at delivery (weeks)	38.9±1.2	39.6±1.2	0.0001
Labor induction: spontaneous delivery prostaglandins oxytocin both	263 (79.7%) 18 (5.5%) 43 (13%) 6 (1.8)	410 (80.7%) 30 (5.9%) 57 (11.2%) 11 (2.1%)	ns
Number of inductions: 1 2 >2	(n=67) 56 (83.6%) 7 (10.4%) 4 (6%)	(n=98) 79 (80.6%) 13 (13.3%) 6 (6.1%)	ns
Mode of delivery: normal vaginal cesarean section vacuum/forceps	275 (83.3%) 44 (13.3%) 11 (3.3%)	321 (63.2%) 178 (35%) 9 (1.8%)	0.00001
Elective cesarean	18 (40.9%)	65 (36.5%)	ns
Cesarean section in labor	26 (59.1%)	113 (63.5%)	ns
Indications for cc: emergency cc cephalic pelvic disproportion no progress in I and II stage other indications	20 (45.4%) 3 (6.8%) 8 (18.1%) 13 (29.5%)	25 (14%) 91 (51.1%) 50 (28.1%) 12 (6.7%)	0.00001
l stage(min)	334±161 35-998	371±176 45-1080	0.01
ll stage (min)	32.8±30	34.5±32.4	ns
lll stage (min)	8.9±4.6	9.6±5.3	ns
Amount of blood loss (ml)	361.5±84.1	415±183	0.0001
PROM Duration of PROM (h)	257 5.75±5.2	348 4.2±4	0.004 ns
clear meconium-stained blood-stained	307 (93%) 21 (6.4%) 2 (0.6%)	428 (84.3%) 76 (15%) 3(0.6%)	0.0015
Shoulder dystocia	1 (0.3%)	4 (0.8%)	ns
Infected cc wound	0	5 (2.8%)	ns
Infection of episiotomy	0	1 (0.3%)	ns
Endometritis	0	1 (0.2%)	ns
Postpartum anemia	31 (9.4%)	52 (10.2%)	ns
Incomplete placenta and/ or fetal membranes	37 (12.(%)	38 (11.5%)	ns
Postpartum hemorrhage in III, IV stages	2 (0.7%)	12 (3.6%)	ns
Subatonic uterus	0	2	ns
Postpartum fever	0	5	ns
Hysterectomy around delivery	0	1	ns

30% of mothers above 45 years give birth to newborns weighted more than 90 centile (Dildy et al. 1996). Macrosomia was more frequently observed in mothers with high BMI (Abenhaim et al. 2007, Hosseini and Nastaran 2004). Mothers with BMI >40 kg/m² had three fold more risk to deliver macrosomic baby. Other authors documented that maternal obesity before pregnancy was independent risk factor for fetal macrosomia (Ehrenberg et al. 2004; Goodall et al. 2005; Khasan & Kenny 2009; Stotland et al. 2004). Excessive pregnancy weight gain is associated with higher risk of macrosomia - from 1.4 to 15.2% (Bérard et al. 1998; Rhodes et al. 2003). The likelihood of macrosomia was greater if the mother was obese before pregnancy, multiparous and of older age (Jolly et al. 2003; Sadeh-Mestechkin et al. 2008; Zhang et al. 2008). Our data confirmed this observation. Mean maternal age in the study group was 30.3±4.6 versus 29.6±4.6 years in the control group (p=0.033). All maternal anthropometric measurements as weight, BMI, pregnancy weight gain, abdominal circumference and fundal height differed significantly between both groups. Mothers of macrosomic babies were heavier, had higher BMI as well as higher pregnancy weight gain. Babinszki et al. (Babinszki et al. 1999) observed that multiparous mothers had greater risk to deliver macrosomic babies. Abortion, preterm delivery and cesarean section in obstetric history did not increase the risk of macrosomia in our data.

The incidence of macrosomia in diabetes is ten times greater (Bręborowicz 2010). Although the majority of macrosomic babies are born to non-diabetic mothers, gestational diabetes remains a well-established risk factor (Esakoff et al. 2009; Kwik et al. 2007). The rate of macrosomia in women with gestational diabetes ranges between 30 and 50%, in women with pre-gestational diabetes the rate of macrosomia is about 26% - mainly in class B and C (Breborowicz 2010). In our data, there were no significant differences in the rate of macrosomia according to classes of diabetes. The possible explanation may be the strict and firm antenatal care of diabetic mothers in our Department, and in addition - planned earlier delivery. In the current study, hypothyroidism and gestational cholestasis occurred more frequently in the control group. Probably early induction of labor in patients with cholestasis decreased the risk of macrosomia.

Mean gestational age of delivery was higher in study group. According to the literature, prolonged pregnancy increases risk of macrosomia (Jolly *et al.* 2003). 20% of newborns delivered after 42 weeks had birth weight greater than 4000 grams and 3% – greater than 4500 grams (Jolly *et al.* 2003). In our study, patients who suffered from threatened abortion or threatened preterm delivery less frequent deliver macrosomic babies.

Macrosomia can be recognized clinically or by ultrasound. Some authors compared ultrasound estimation, clinical estimation and self-estimation of birth weight

Tab. 7. Data of fetal measurements in ultrasound.

USG	Control group Mean ± SD [min–max]	Study group Mean ± SD [min–max]	p-value
BPD (mm)	92.3±4.0 76-102	101±2.8 84-105	0.00001
HC (mm)	321.0±13.3 275-359	345.8±9.9 319-380	0.0001
AC (mm)	329.0±18.0 265-358	364.6±15.7 302-408	0.00001
FL (mm)	71.7±3.7 62-68	77.3±3.2 68-88	0.00001
AFI (cm)	10.8±3.8	9.8±4.1	ns
EFW (g)	3 149±354 1 908–4 000	3 919±313 2 800-4 580	0.00001

Tab. 8. Neonatal data.

Neonatal data	Control group Mean ± SD [min-max] or n(%)	Study group Mean ± SD [min–max] or n(%)	p-value
Sex: female male	175 (53%) 155 (47%)	151 (29.7%) 357 (70.3%)	0.0001
Apgar 1 st minute: 0-3 4-7 8-10	0 6 (1.8%) 324 (98.2%)	2 (0.4%) 15 (3%) 491 (96.5%)	ns
Apgar 5 th minute: 0–3 4–7 8–10	1 (0.3%) 0 329 (99.6%)	0 3 (0.6%) 505 (99.4%)	ns
Neonatal care unit	11 (3.3%)	6 (1.9%)	0.03
Infections	10 (3%)	60 (11.8%)	0.00001
Fetal trauma: clavicle fracture IVH cranial hematoma brachial plexus injury	2 (0.6%) 5 (1.5%) 7 (2.1%) 0	14 (2.7%) 3 (0.6%) 10 (2%) 1 (0.2%)	ns
Breathing disorders	5 (1.5%	17 (3.3%)	ns
Hypoglycemia	52 (15.8%)	11 (2.2%)	0.00001
Hyperbilirubinemia	33 (10%)	136 (26.8%)	0.00001

(Halaska *et al.* 2006). The contribution of ultrasound, added to routine clinical estimation of fetal weight, was clinically insignificant apart from a further increase in cesarean section rate (Weiner *et al.* 2002). In our study, clinical measures (fundal height and abdominal circumference) were significantly bigger in macrosomic group than in control group.

Some authors concluded that higher amniotic fluid index was connected with higher prevalence of macrosomia (Hackmon *et al.* 2007, Shinoglu *et al.* 2003). Shinoglu *et al.* (Shinoglu *et al.* 2003) mentioned that AFI cut off value differ in population. In Turkish population the AFI cut off value was 17 cm. When AFI was <17 cm, mean birth weight was 3296.71 grams, and if AFI was \geq 17 cm, mean birth weight was 3970.2 grams. In our study we cannot confirm this relationship.

We revealed that 83.3% of control group patients delivered vaginally compared to 62.3% of macrosomic group. This finding was consistent with another studies (Conway 2002; Weiner et al. 2002). The indications for cesarean section were not similar in the two groups. In the study group more cesarean sections were due to cephalo-pelvic disproportion or prolonged stage of labor. In control group, cesarean was performed as emergency. According to study of Siggelkow et al. (Siggelkow et al. 2008) prolonged labor due to macrosomia led to obstructed labor and then to cesarean section. Other labor characteristics did not show any significant difference between both groups except prolonged first stage of labor and increased blood loss occurred in association with macrosomia. In current study there was no statistical difference between both groups according to postpartum maternal complications like infections, fever, anemia, postpartum hemorrhage and operative interventions. Other publications noted that in cases of macrosomia, there was increased risk of uterine atony, placental retention, bladder injury and postpartum infections (endometritis, urinary tract infection and wound infection). Most clinical conditions were rare (less than 1%) regardless of the method of delivery or infant weight, except shoulder dystocia, postpartum hemorrhage and postpartum infections (Gregory et al. 1998; Oral et al. 2001; Raio et al. 2002). In addition prolonged hospitalization after delivery was noted in patients with macrosomic newborn (Stotland et al. 2004).

There were significantly more males in the study group comparing to the control group in our study. This finding was also reported in study of Gillean et al (Gillean 2005). Most studies mentioned the birth trauma like clavicle or humorous fracture, Erb's palsy and hematoma in macrosomic babies (Mulik *et al.* 2003; Oral *et al.* 2001; Stotland *et al.* 2004; Wollschlaeger *et al.* 1999). Our data showed that there was no difference between both groups according to Apgar score and neonatal birth trauma. Macrosomic newborns seem to be the group of higher risk of hiperbilirubinemia and neonatal infections whereas hypoglycemia was observed more often in the control group. The rate of transfer to intensive care unit was more frequent among newborns in the control group.

In summary, macrosomia is found more often in older obese multiparas. When birthweight is 4200 grams or more, the number of cesarean section increases. The main indications for cesarean section in cases of macrosomia are cephalo-pelvic disproportion and obstructed labor. Macrosomia is more often in male fetuses. REFERENCES

- 1 Abenhaim HA, Kinch RA, Morin L, Benjamin A, Usher R (2007). Effect of prepregnancy body mass index categories on obstetrical and antenatal outcomes. Arch Gynecol Obstet **275**: 39–43.
- 2 Babinszki A, Kerenyi T, Torok O, Grazi V, Lapinski RH, Berkowicz RL (1999). Perinatal outcome in grand and great-grand multiparity: effects of parity on obstetric risk factors. Am J Obstet Gynecol **181**: 669–74.
- 3 Bérard J, Dufour P, Vinatier D, Subtil D, Vanderstichéle S, Monnier JC, Puech F (1998). Fetal macrosomia: risk factors and outcome. A study of the outcome concering 100 cases>4500 g. Eur J Obstet Gynecol Reprod Biol **77**: 51–59.
- 4 Bręborowicz G (2010). Ciąża wysokiego ryzyka. Poznań: OWN.
- 5 Conway DL (2002). Delivery of the macrosomic infant: cesarean section versus vaginal delivery. Seminars in Perinatology 26: 225–231.
- 6 Dildy GA, Jackson GM, Fowers GK, Oshiro BT, Varner MW, Clark SL (1996). Very advanced maternal age: pregnancy after age 45. Am J Obstet Gynecol **175**: 668–74.
- 7 Ehrenberg HM, Mercer BM, Catalano PM (2004). The influence of obesity and diabetes on the prevalence of macrosomia. Am J Obstet Gynecol 191: 964–8.
- 8 Esakoff TF, Cheng YW, Sparks TN, Caughey AB (2009). The association between birthweight 4000g or greater and perinatal outcomes in patients with and without gestational diabetes mellitus. Am J Obstet Gynecol **200**: 672.e1–672.e4.
- Gillean JR, Coonrod DV, Russ R, Bay C (2005). Big infants in the neonatal intensive care unit. Am J Obstet Gynecol 192: 1948–55.
- 10 Goodall PT, Ahn JT, Chapa JB, Hibbard JU (2005). Obesity as a risk factor for failed trial of labor in patients with previous cesarean delivery. Am J Obstet Gynecol **192**: 1423–6.
- 11 Gregory KD, Henry OA, Ramicone ER, Chan LS, Platt LD (1998). Maternal and infant complications in high and normal weight infants by method of delivery. Obstet Gynecol **92**: 507–13.
- 12 Hackmon R, Bornstein E, Ferber A, Horani J, O'Reilly Green CP, Divon MY (2007). Combined analysis with amniotic fluid index and estimated fetal weight for prediction of severe macrosomia at birth. Am J Obstet Gynecol **196**: 333.e1–333.e4.
- 13 Halaska MG, Vik R, Feldmar P, Hrehorcak M, Krcmar M, Mlcochova H, Mala I, Rob L (2006). Predicting term birth weight using ultrasound and maternal characteristics. Eur J Obstet Gynecol Reprod Biol **128**: 231–237.
- 14 Herbst MA (2005). Treatment of suspected fetal macrosomia: A cost-effectiveness analysis. Am J Obstet Gynecol **193**: 1035–9.
- 15 Hosseini M, Nastaran J (2004). Relationship between pregnancy outcome and maternal BMI and weight gain. Inter Congress Series 380–383.
- 16 Jolly MC, Sebire NJ, Harris JP, Regan L, Robinson S (2003). Risks factors for macrosomia and its clinical consequences: a study of 350,311 pregnacies. Eur J Obstet Gynecol Reprod Biol 111: 9–14.
- 17 Khashan AS, Kenny C (2009). The effects of maternal body mass index on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol **24**: 697–705.
- 18 Kwik M, Seeho SK, Smith C, McElduff A, Morris JM (2007). Outcomes of pregnancies affected by impaired glucose tolerance. Diabetes Res Clin Pract 77: 263–8.
- 19 Malinowska-Polubiec A, Zaręba-Szudlik J, Świetlik A, Romejko E, Sieńko J, Sotowska A (2004). Przebieg ciąży i porodu u matek dzieci z LGA (large for gestational age). Gin Pol **75** (suppl. 2): 216–221.
- 20 Mulik V, Usha Kiran TS, Bethal J, Bhal PS (2003). The outcome of macrosomic fetuses in a low risk primigravid population. Int J Gynecol Obstet **80**: 15–22.
- 21 Oral E, Catğdas A, Gezer A, Kaleli S, Aydinli K, Őçer F (2001). Perinatal and maternal outcomes of fetal macrosomia. Eur J Obstet Gynecol Reprod Biol **99**: 167–171.
- 22 Raio L, Ghezzi F, Di Naro E, Buttarelli M, Franchi M, Dühwiler H (2002). Perinatal outcome of fetuses with a birth weight greater than 4500 g: an analysis of 3356 cases. Eur J Obstet Gynecol Reprod Biol **109**: 160–165.

- 23 Rhodes JC, Schoendorf KC, Parker JD (2003). Contribution of excess weight gain during pregnancy and macrosomia to the cesarean delivery rate, 1999–2000. Pediatrics **111**: 1181–1185.
- 24 Sadeh-Mestechkin D, Walfisch A, Shachar R, Shoham I, Vardi H, Hallak (2008). Suspected macrosomia? Better not tell. Arch Gynecol Obstet **278**: 225–230.
- 25 Sanchez-Ramos L, Bernstein S, Kaunitz AM (2002). Expectant management versus labor induction for suspected fetal macrosomia: A systematic review. Obstet Gynecol **100**: 997–1002.
- 26 Shinoglu Z, Gurbuz A, Kabaca C (2003). The amniotic fluid index as a predictor of fetal macrosomia in a turkish population. Inter J Gynecol Obstet 81: 223–225.
- 27 Siggelkow W, Boehm D, Skala C, Grosslercher M, Schmidt M, Koelbl (2008). The influence of macrosomia on the duration of labor, the mode of delivery and intrapartum complications. Arch Gynecol Obstet **278**: 547–553.

- 28 Steer P (2004). The management of large and small for gestational age fetuses. Seminar in Perinatology **28**: 59–66.
- 29 Stotland NE, Caughey AB, Bred EM, Escober GJ (2004). Risk factors and obstetric complications associated with macrosomia. Inter J Gynecol Obstet 87: 220–226.
- 30 Sukran PJ, Hsiech CC, Johanson ALV, Dickman PW, Cnattingius S (2004). Reasons for increasing trends in large for gestational age births. Obstet Gynecol **104**: 720–726.
- 31 Weiner Z, Ben-Shlomo I, Beck-Fruchter R, Goldberg Y, Shalev E (2002). Clinical and ultrasonographic weight estimation in large for gestational age fetus. Eur J Obstet Gynecol Reprod Biol **105**: 20–24.
- 32 Wollschlaeger K, Nieder J, Köppe, I, Härtlein K (1999). A study of fetal macrosomia. Arch Gynecol Obstet **263**: 51–55.
- 33 Zhang X, Decker A, Platt RW, Kramer MS (2008). How big is big? The perinatal consequences of fetal macrosomia. Am J Obstet Gynecol **198**: 517.e1–517.e6.