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Abstract OBJECTIVES: Inhibition of the enzyme acetylcholinesterase (AChE) is the main 
mechanism both of therapeutic action of drugs for the treatment of Alzheimer’s 
disease and toxic action of organophosphorus compounds. Various types of 
oximes reactivate AChE and are commonly used as antidotes against organophos-
phates (pesticides, nerve agents). 
METHODS: Effects both of AChE inhibitors (tacrine, 7-methoxytacrine) and 
oximes (pralidoxime, trimedoxime, obidoxime, methoxime, HI-6) on Complex 
I of electron transport chain (ETC) were examined. The enzyme activity was 
measured spectrophotometrically in crude mitochondrial fraction isolated from 
pig brain. 
RESULTS: Our results showed statistically significant Complex I inhibition by 
tacrine, other drugs did not affect the enzyme activity significantly. 
CONCLUSIONS: These observations suggest the possibility of tacrine-induced side 
effects related to disturbance in ETC. On the contrary, it seems that oximes do not 
affect cellular energetic metabolism.

 
Abbreviations:

AChE - acetylcholinesterase
AD - Alzheimer’s disease
COX - cytochrome c oxidase
ETC - electron transport chain
7-MEOTA - 9-amino-7-methoxy-1,2,3,4-tetrahydroacridine
NADH - reduced nicotinamide adenine dinucleotide
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INTRODUCTION
Cognitive impairment in Alzheimer’s disease (AD) is 
treated with cholinesterase inhibitors, especially with 
reversible acetylcholinesterase (AChE, EC 3.1.1.7) 
inhibitors. The first AChE inhibitor licensed for AD 
therapy was tacrine, which was withdrawn from the 
market due to its toxicity. Current treatment of AD is 
predominantly based on donepezil, rivastigmine, and 
galantamine. These drugs are related to cholinergic cen-
tral transmission, decrease the enzymatic degradation 
of acetylcholine by the inhibition of AChE, and increase 
both the concentration and persistence of acetylcholine 
in synaptic cleft (Nieoullon 2010). However, deriva-
tive of tacrine called 7-MEOTA (9-amino-7-methoxy-
1,2,3,4-tetrahydroacridine) has been developed and 
further tested as AD modifying drug with better toxic-
ity profile in comparison to tacrine (Filip et al. 1991; 
Korabecny et al. 2010a,b,c). 

During recent years, AChE inhibitors were tested 
for their capacity to protect AChE from inhibition by 
organophosphorus compounds (Lorke et al. 2010). The 
current standard antidotal treatment includes oximes 
and atropine. Oximes effect as cholinesterase reactiva-
tors are applied in antidote therapy against organophos-
phates – nerve agents (e.g. sarin, tabun) and pesticides 
(e.g. paraoxon, chlorpyrifos) (Lorke et al. 2008; Oh et al. 
2006). Currently, only five AChE reactivators (pralidox-
ime, trimedoxime, obidoxime, methoxime, HI-6) are 
worldwide used together with combined treatment with 
atropine and diazepam (Kuca et al. 2007). The effective-
ness of oximes treatment is limited by different factors: 
reactivating properties and pharmacokinetics as well 
as sedation, artificial ventilation and other individual 
characteristics of oximes (Antonijevic & Stojiljkovic 
2007). 

Complex I of electron transport chain (ETC) plays 
a major role in controlling of oxidative phosphoryla-
tion and its abnormal activity can lead to defects in 
energy metabolism and thereby to changes in neuro-
nal activity (Maurer et al. 2000; Pathak & Davey 2008). 
Furthermore, induction of oxidative stress is one of the 
causative factors in AD and Complexes I and III are the 
most responsible for production of reactive oxygen spe-
cies (ROS) (Ezoulin et al. 2006; Reddy & Beal 2005). 
Complex I is the most pharmacologically affected from 
all ETC complexes. Haloperidol, chlorpromazine and 
fluphenazine inhibited Complex I activity, similarly 
antidepressants decrease its activity. Contrary, clozap-
ine did not cause changes (Prince et al. 1997; Hroudova 
& Fisar 2010).

We investigated in vitro activities of tacrine, 
7-MEOTA and five oximes on the NADH dehydroge-
nase (Complex I of ETC) activity. We suppose that in 
vitro effects of these drugs on Complex I activity pro-
vide us information about potential contribution of 
changes in cellular energetics to their therapeutic and/
or adverse effects.

MATERIAL & METHODS
Pig brain mitochondria isolation
The mitochondria were isolated from pig brain cortex 
as described previously (Fišar et al. 2010; Fišar 2010). 
Briefly, the homogenate was centrifuged at 1000 g for 
10 min to remove unbroken cells, nuclei and cell debris. 
The supernatant was carefully decanted; the pellet was 
resuspended in buffered sucrose and centrifuged again 
under the same conditions. Supernatants were collected 
and recentrifuged at 10000 g for 15 min. The final 
pellet containing mitochondria was washed twice with 
buffered sucrose (10 000 g, 15 min), resuspended to a 
protein concentration of 20–40 mg/ml, and stored at 
–70°C until the assay. Protein concentration was deter-
mined by the method of Lowry (Lowry et al. 1951), with 
bovine serum albumin as the standard.

Effect of drugs on Complex I (NADH dehydrogenase 
(ubiquinone), EC 1.6.5.3) activity
Crude mitochondrial extract was resuspended with 
hypotonic buffer (25 mmol/l potassium phosphate, 
5 mmol/l MgCl2, pH 7.2); further, they were repeatedly 
frozen and thaw two times to achieve the maximum of 
enzyme activity. 

Complex I activity was determined as rotenone sen-
sitive rate of NADH oxidation at 340 nm. Previously 
published method was used with a slight modification 
(Ragan et al. 1987; Folbergrová et al. 2007; Hroudova & 
Fisar 2010). The reaction mixture contained 25 mmol/l 
potassium phosphate (pH 7.2), 5 mmol/l MgCl2, 
2.5 mg/ml bovine serum albumin (BSA), 2 mmol/l 
KCN, 0.3 mmol/l NADH, 33 μmol/l decylubiquinone, 
and 150 μg/ml of sample proteins. Samples were incu-
bated with selected oxime for 30 minutes at 30 °C, final 
drug concentration was 50 μmol/l for all drugs tested. 
Samples were measured in a total volume of 3 ml. The 
reaction was started by the addition of NADH and mea-
sured for 1 min, afterward rotenone was added in final 
concentration of 50 μmol/l, and the inhibited rate was 
measured for further 2 min.

All chemicals were purchased from Sigma-Aldrich 
Co. (St. Louis, MO, USA), drugs tested (pralidoxime, 
trimedoxime, obidoxime, methoxime, HI-6, tacrine 
and 7-MEOTA) were obtained from Department of 
Toxicology (Faculty of Military Health Sciences, Uni-
versity of Defence). Uvicon XL spectrophotometer 
(SECOMAM, Alès, France) was used for all assays.

Data analysis and statistics
Enzyme activities were evaluated as a slope of time 
dependence of absorbance of samples using LabPower 
Junior software (SECOMAM). Each independent 
measurement had a control, i.e. sample containing all 
components except for the drug. Relative changes of 
enzyme activities evoked by drugs were determined 
assuming that the activity of the control sample is equal 
to 100%. All data presented are expressed as the mean 
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± standard deviation. Results were analyzed by STA-
TISTICA (data analysis software system, version 9.0, 
StatSoft, Inc., Tulsa, OK, USA). The Wilcoxon matched 
pairs test was used to calculate test statistics in order 
to compare the enzyme activities in samples with and 
without the drug.

RESULTS
Potency of tested drug in affecting of Complex I activ-
ity is summarized in the Figure 1. All drugs showed 
inhibitory effect on the Complex I activity; however, 
only tacrine induced statistically significant inhibition.

DISCUSSION 
We evaluated Complex I activity of ETC after the inter-
action with AChE inhibitors (tacrine, 7-MEOTA) and 
reactivators (pralidoxime, trimedoxime, obidoxime, 
methoxime, HI-6). The study on the interaction of 
drugs with components of ETC is important for pre-
diction of their potential influence on cellular energet-
ics both in periphery and in the brain, i.e. on processes 
related to some therapeutic and/or adverse effects of 
the pharmacotherapy. The aim of the present study was 
to examine whether the interaction between selected 
inhibitors and reactivators of AChE and Complex I 
of ETC leads to changes in the NADH dehydrogenase 
activity. Mitochondria isolated from pig brain were 
used to study in vitro effects of these drugs.

It can be concluded that although our study indi-
cates the interaction of oximes with Complex I of 
ETC, the extent of inhibition is relatively small com-
pared to known Complex I inhibitors such as conven-

tional antipsychotics, and the oxime interaction with 
Complex I seems not to be clinically significant. Drug 
concentration used in our experiment was near to max-
imal expected brain concentration of oximes. Results 
obtained with AChE inhibitors confirm that 7-MEOTA 
do not significantly inhibit NADH dehydrogenase 
activity. Tacrine was the only significant inhibitor of 
Complex I in our study (Figure 1). 

Tacrine shows various side effects. In study with 
human hepatoma cell line Hep G2, tacrine caused 
increase of the citric acid cycle, which could be a sig-
nature of uncoupling of the oxidative phosphorylation 
(Niklas et al. 2009). Another study compared parame-
ters leading to oxidative stress – differences were found 
between newly developed AChE inhibitor PMS777 and 
tacrine; PMS777 was able to fight inflammatory event 
whereas tacrine was able to minimize them (Ezoulin et 
al. 2007). It was shown that tacrine induces cytotoxicity 
both via inhibition of mitochondrial energization and 
by destabilization of membrane phospholipids associ-
ated with oxidative stress (Ezoulin et al. 2006). In our 
study, drug concentrations were higher (50 μmol/l); in 
spite of this fact, other drugs tested than tacrine have 
not influenced significantly Complex I activity. 

According to cumulative evidences, mitochondrial 
insufficiencies contribute to pathology of AD: mito-
chondrial abnormalities, alterations in mitochondrial 
enzymes, and deficiency of cytochrome c oxidase 
(COX) have been observed (Bosetti et al. 2002; Cardoso 
et al. 2004; Gibson et al. 1998). Down-regulation of 
mitochondrial genes in Complex I was found in early as 
well as in definite AD brain specimens (Reddy & Beal 
2005). Studies reported decreased Complex I activity in 
AD brains (Chandrasekharan et al. 1996; Parker et al. 
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Fig. 1. Effects of acetylcholinesterase inhibitors (tacrine and 7-MEOTA) and reactivators (pralidoxime, 
trimedoxime, obidoxime, HI-6, and methoxime) on activity of the Complex I of electron transport chain. 
Values are means as ± standard deviation of at least 5 independent measurements; comparison between 
controls and drugs tested was determined using Wilcoxon matched paired test (*p<0.05).



262 Copyright © 2011 Neuroendocrinology Letters ISSN 0172–780X • www.nel.edu

Jana Hroudová, Zdeněk Fišar, Jan Korábečný, Kamil Kuča

1994), gene expression of ND4 – subunit of Complex I 
was found decreased in temporal cortex of AD patients 
(Fukuyama et al. 1996). Changes of the expression of 
mitochondrial and nuclear genes, encoding parts of 
COX and NADH dehydrogenase enzyme complexes, 
may contribute to alterations of oxidative metabolism in 
AD (Aksenov et al. 1999). Therefore, inhibition of this 
complex may be concerned with influence of energetic 
metabolism and was connected with possible extrapyra-
midal side effects caused often by haloperidol and chlor-
promazine (Maurer & Möller 1997; Maurer et al. 2000).

CONCLUSIONS
Present results indicate that AChE reactivators prali-
doxime, obidoxime, trimedoxime, methoxime and HI-6 
can be most probably taken as relatively safe compound 
regarding to drug-induced changes in Complex I activ-
ity and related changes in cellular energetics. It corre-
sponds to study that observed influence of oximes on 
mitochondrial COX activity and showed only slightly 
inhibited activity by 2-PAM (Sakurada et al. 2009). 
Contrary, the interactions with AChE inhibitor tacrine 
significantly affect the Complex I activity and we sup-
pose that this effect can contribute to its adverse effects. 
Because of these data, more experiments will be done in 
order to get information about in vivo therapeutic and 
adverse effects of treatment with AChE inhibitors.
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