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Abstract Much experimental and clinical evidence has been accumulated indicating the 
complexity of regulatory processes associated with autoimmune demyelination. 
Even slight disbalance of immunoregulatory circuits may result in the loss of 
proper control of self antigen specific immune reaction. Here, we discuss the 
immunoregulatory potential of several immune (dendritic cells and regulatory 
T cells), as well as non-immune cell populations (mesenchymal stem cells and 
astrocytes) with regard to their possible role in autoimmune demyelination. 

Abbreviations:

CNS - central nervous system
MS - multiple sclerosis
EAE  - experimental autoimmune encephalomyelitis 
APC  - antigen-presenting cell
DCs  - dendritic cells 
Tregs  - regulatory T cells
nTregs  - natural Tregs
iTregs - inducible Tregs
SC  - stem cells
PBMCs - peripheral blood mononuclear cells
TLR - Toll-like receptor
iNOS  - inducible nitric oxide synthase
IDO  - indoleamine-2,3-dioxygenase
IFN  - interferon 
IL  - interleukin

INTRODUCTION
The results of numerous studies point at the auto-
aggressive mechanisms underlying the demy-
elination of the central nervous system (CNS) 
characteristic for multiple sclerosis (MS) (Prob-
ert & Selmaj 1997; Hohlfeld et al. 1995; Hafler 
& Weiner 1995). The morphological sign of the 
ongoing pathological process is the focal damage 
of the myelin sheath associated with the inflam-
matory infiltration – so called “demyelination 
plaque” (Raine 1997). Several types of CNS lesions 
were described showing diverse signs of accumu-
lation of cellular and humoral components of the 
immune system, as well as different demyelination 
and remyelination patterns (Lucchinetti et al. 
2000). Also particular types of the clinical course 
of the disease, which may be relapsing-remitting, 
secondary progressive or primary progressive, are 
accompanied by distinctive immunopathological 
changes (Bramow et al. 2010). Apart from demy-
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elination, an axonal loss was documented in MS lesions 
and axonal injury was suggested as the main correlate 
of the functional disability in MS patients (Bjartmar et 
al. 2000). In the last years, the correlation between the 
immune processes and axonal and neuronal degenera-
tion in MS became a topic of a serious scientific discus-
sion (DeLuca et al. 2006). However, the latest studies 
seem to confirm the primary role of the inflammatory 
reaction in the pathological cascade underlying the 
CNS changes in MS (Frischer et al. 2009; Gunnarsson 
et al. 2010).

On the cellular level, the immunopathological obser-
vations suggest the oligodendrocyte as a target for the 
autoimmune response in MS and myelin components 
as potential antigens provoking the uncontrolled devel-
opment of immune reaction (Raine et al. 1997). Some of 
these proteins (mainly MBP, PLP, MOG) have success-
fully been used in rodents to induce, after subcutaneous 
immunization, the experimental autoimmune encepha-
lomyelitis (EAE). The disease representing many patho-
logical and clinical features of MS is considered as the 
best available animal model of MS (Hafler & Weiner 
1995; Owens et al. 2001). The experimental results 
suggest that myelin specific T cell clones are the effec-
tor component of the autoaggressive process in EAE 
(Kuchroo et al. 2002). According to recently published 
observations, the cooperative action of lymphocytes 
secreting interferon (IFN)–γ (T helper type 1; Th1 cells) 
and interleukin (IL)-17 (Th17 cells) seems to be crucial 
for EAE development (Gocke et al. 2007; O’Connor et 
al. 2008). The association of disease activity and therapy 
response with accumulation of Th1 and Th17 cells and 
enhanced IFN-γ and IL-17 production was also shown 
in MS (Frisullo et al. 2008; Kebir et al. 2009; Axtell et 
al. 2010), supporting the putative engagement of spe-
cific T cell clones in the effector phase of the autoag-
gressive demyelination in humans. However, nearly 
two decades ago it has been demonstrated that myelin 
specific autoreactive T cells are a “normal” part of the 
immune repertoire also in healthy individuals (Martin 
et al. 1992). This fact implies the existence of immuno-
regulatory abnormalities in MS which eventually lead 
to uncontrolled activation of autoreactive effector cells, 
demyelination, inefficient remyelination, axonal loss 
and clinical deficits. 

Immunoregulation in humans and other mammals 
encompasses very complex systemic and local processes, 
depending on the activity of numerous regulatory cell 
types, as well as associated with them transcriptional 
factors, enzymes and broad array of cell-surface and 
humoral molecules. The mechanisms preventing, under 
healthy conditions, autoaggressive reactions include 
not only immune cell populations involved in central 
and peripheral tolerance – mainly dendritic cells (DCs) 
and regulatory T cells, but also cell types from outside 
the classical immune system, e.g. stem cells and organ 
specific cells taking part in the local immunoregulatory 
processes, e.g. astrocytes in CNS.

DENDRITIC CELLS
Expression of a broad spectrum of pattern recognition 
receptors (e.g., Toll Like Receptors, TLRs) enables DCs 
to react directly to various pathogen-specific elements 
and – as a result – affect the direction and intensity of 
the innate immune response (Banchereau & Steinman 
1998; Shortman & Liu 2002). Additionally, as the most 
effective antigen presenting cells (APC), DCs are cru-
cial regulators of the adoptive immunity, linking in that 
way both major arms of the host defence. DCs prime 
the differentiation of naive T and B cells (Adema et al. 
1997; Croft et al. 1992). Also, they are able to present 
the exogenous antigens bound to both MHC class II 
and MHC class I molecules. This process known as a 
“cross presentation” facilitates immune reaction against 
viral or tumour antigens obtained from dead cells 
(“cross activation”) and enables induction and main-
taining of peripheral tolerance towards self-antigens 
(“cross tolerance”) (Brossart & Bevan 1997). In the 
thymus, DCs take part in central tolerance by detect-
ing and deleting self-reactive thymocytes in the process 
of negative selection (Volkmann et al. 1997). However, 
the functional properties depend strongly on the subset 
and maturation state of DCs. In humans, there are two 
main DC-subsets – myeloid and plasmacytoid DCs 
(mDCs and pDCs, respectively). These subsets differ 
in phenotype and function including: ability to capture, 
process and present antigens; secretion profile; reactiv-
ity to microbial products and the type of immune reac-
tion preferentially primed. The myeloid subset typically 
secretes large amounts of IL-12 and IL-23 upon stimu-
lation and, thus, is thought to be responsible for induc-
tion and propagation of Th1- and Th17-driven immune 
responses (Oppmann et al. 2000; Aggrawal et al. 2010). 
To the contrary, pDCs are characterized by the ability to 
secrete very high amounts of type I IFNs (mainly IFN-α 
and IFN-β) and produce IL-12 only under particular 
experimental conditions. Concomitantly with other 
secretion profile, pDCs are not only able to prime Th1 
cells (Cella et al. 2000) but rather demonstrate a bias to 
induce differentiation of Th2 cells (Rissoan et al. 1999), 
as well as regulatory T cells (Moseman et al. 2004; Ito et 
al. 2007). Also the pattern of Toll-like receptor (TLR) 
expression on pDCs, consisting mainly of TLR7 and 
TLR9 and very low level of other TLRs, differs strik-
ingly from other DC subsets (Kadowaki et al. 2001). 

Numerous EAE studies proved the engagement of 
DCs in the regulation of the immune processes lead-
ing to the autoimmune demyelination in this animal 
model. DCs were not only very efficient stimulators of 
encephalitogenic T cells, but were also able, after previ-
ous incubation with immunogenic peptide, to transfer 
disease to healthy animals (Dittel et al. 1999; Weir et al. 
2002). In the natural course of EAE, the accumulation 
and maturity state of DCs in CNS correlated with clini-
cal signs of the disease (Serafini et al. 2000; Fischer & 
Reichmann 2001). On the other hand, depending on the 
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state of maturation and the way of administration, DCs 
presenting myelin antigens could influence beneficially 
the clinical course of EAE (Huang et al. 2000; Menges et 
al. 2002). Additionally, it was demonstrated that diverse 
DCs subsets may exert different or even contrary effects 
on CNS immune reaction, with pDCs acting as sup-
pressors of mDC-stimulated TH17 response (Bailey et 
al. 2007; Bailey-Bucktrout et al. 2008).

In contrast to EAE, data regarding the involvement 
of DCs in immunopathogenesis of MS are rather sparse 
and – to great extent – address the properties of DCs 
derived from human monocytes in vitro (Huang et al. 
1999; Huang et al. 2001a; Huang et al. 2001b; Hussien et 
al. 2001; Berghella et al., 2005). However, both myeloid 
and plasmacytoid DCs were found in cerebrospinal 
fluid of MS patients (Pashenkov et al. 2001). In our 
research, we performed the phenotypic and functional 
analysis of the three main peripheral blood DCs popu-
lations (two distinct populations of mDCs and pDC) 
in patients with relapsing-remitting MS and in healthy 
subjects. There were no differences in the frequency 
of the particular DC populations between MS patients 
and healthy subjects. We found, however, that periph-
eral blood pDCs in MS patients showed significantly 
reduced expression of two main co-stimulatory mol-
ecules: CD86 and 4-1BBL, while both myeloid DCs 
populations did not differ phenotypically between MS 
and healthy subjects. The immature co-stimulatory 
molecule profile of freshly isolated pDCs in MS was 
further confirmed in culture experiments. Plasma-
cytoid DCs, isolated from MS patients and cultured 
under conditions mimicking to some extent matura-
tion signals associated with acquired immune reaction 
(IL-3 and CD40L), showed impaired up-regulation 
of several molecules crucial in the DC–effector cell 
interaction (CD40, CD83, CD86, 4-1BBL). In further 
experiments we demonstrated also that pDCs from MS 
patients failed to regulate the proliferative and secretory 
response of autologous peripheral blood mononuclear 
cells (PBMCs) (Stasiolek et al. 2006).

In order to assess the functional properties of pDCs 
with regard to their engagement in innate immunity, 
we stimulated pDCs with TLR7 and TLR9 ligands. 
Under these conditions, which imitate an influence of 
microbial products, pDCs from MS patients were able 
to overcome the observed ex vivo phenotypic deficits, 
however, secreted significantly lower amounts of IFN-α 
than pDCs from healthy subjects. Additionally, the 
pDCs expression profile of other TLR receptors was 
significantly different in MS than in controls (Stasiolek 
et al. 2006; Bayas et al. 2009). Recently, the pDCs popu-
lation was further divided into two functionally dif-
ferent subsets. In relapsing-remitting MS patients the 
balance between these two subsets was demonstrated to 
be disturbed, resulting in a proinflammatory bias of the 
pDC-primed immune response (Schwab et al. 2010). 
Also in progressive forms of MS, the peripheral blood 
DCs were shown to posses an immature surface expres-

sion profile (Lopez et al. 2006). Most recently, an accu-
mulation of pDCs in cerebrospinal fluid was observed 
in MS patients suffering from the acute disease relapse, 
supporting the experimental data which demonstrate 
an engagement of pDCs in the local CNS immunity 
(Longhini et al. 2011). 

Interestingly, we observed that the phenotypic and 
functional abnormalities of pDCs in MS could be 
reversed, at least partially, by immunomodulatory treat-
ment with glatiramer acetate (Copaxone) (Stasiolek et 
al. 2006). The influence of the MS therapy on the DCs 
properties was documented also for IFN-β (Lande et al. 
2008) and corticosteroids (Navarro et al. 2006).

REGULATORY T CELLS
Immunoregulatory T cells encompass a growing 
group of various T lymphocyte populations includ-
ing: CD4+CD25+FoxP3+T cells (Tregs) (reviewed in 
Curotto de Lafaille & Lafaille 2009), IL-10 secreting 
type 1 regulatory T cells (Tr1) (Levings & Roncarolo 
2000), TGF-β producing Th3 cells (Chen et al. 1994) 
and regulatory CD8+ T cells (Sun et al. 1988). In our 
research, we focused on Tregs and their involvement in 
MS pathology. The selection of antigen specific Tregs 
in thymus (natural Tregs, nTregs) has been well estab-
lished in numerous studies. Moreover, accumulating 
evidence suggests that Tregs generated in the periphery 
upon encounter of foreign and self antigens (adaptive 
or inducible Tregs, iTregs) play an indispensable role 
in the maintenance of immune homeostasis (Curotto 
de Lafaille & Lafaille , 2009; Sakaguchi et al. 2006). 
Importantly, both natural and inducible Treg popula-
tions could be effectively expanded in experimental set-
tings by antigen presenting DCs (Yamazaki et al. 2003; 
Yamazaki et al. 2007).

The antigen specific, beneficial effect of Tregs on the 
immune demyelination was demonstrated in various 
EAE models (Yu et al. 2005; Stephens et al. 2009). Addi-
tionally, regulation of Treg function and accumulation 
was suggested as a mechanism of action of a vast verity 
of EAE modulating factors including growth factors, 
immunoglobulins and endocrine active substances 
(Polanczyk et al. 2005; Chen et al. 2006; Ephrem et al. 
2008; Platten et al. 2009; Benkhoucha et al. 2010). To the 
contrary, the involvement of Tregs in the immunopa-
thology of MS is not so well understood. The frequency 
of Tregs in peripheral blood of relapsing-remitting MS 
patients was reported as reduced (Hong et al. 2005; 
Venken et al. 2008a; Frisullo et al. 2009) or equal to 
healthy subjects (Venken et al. 2006; Haas et al. 2005; 
Stasiolek et al. 2006; Feger et al. 2007). Interestingly, in 
some studies the results of quantitative or functional 
Tregs analysis were dependent on the phenotypic cri-
teria applied (Fransson et al. 2009; Fletcher et al. 2009; 
Michel et al. 2008), underscoring the necessity of more 
specific phenotypic characterization of human Tregs. 
Nonetheless, the functional experiments, point almost 
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unanimously at the impairment of the regulatory prop-
erties of Tregs in MS (Vigilietta et al. 2004; Haas et al. 
2005; Kumar et al. 2006; Frisullo et al. 2008; Fletcher et 
al. 2009). Interestingly, the Treg functional character-
istics seems to differ between relapsing-remitting and 
progressive MS (Venken et al. 2006; Venken et al. 2008a; 
Venken et al. 2008b). In our study, we found similar 
frequencies of peripheral blood CD4+CD25+FoxP3+ 
Tregs ex vivo in clinically stable relapsing-remitting 
MS patients and healthy individuals (Stasiolek et al. 
2006). Also, the generation of Tregs from naive CD4+ 
T cells, cultured with autologous pDCs stimulated with 
TLR9 ligands, did not differ between MS patients and 
healthy subjects (Bayas et al. 2009). Our further experi-
ments demonstrated that in healthy individuals the 
persistence of Tregs in culture with myelin antigens 
depended on the presence of pDCs. To the contrary, in 
MS patients we observed a loss of this interaction as a 
sign of an impaired interplay of these two main popula-
tions of immunoregulatory cells (Stasiolek et al. 2006). 
Moreover, several studies performed with MS patients 
undergoing therapy showed that the same immuno-
modulatory agents influence and modify both DC and 
Treg homeostasis (Venken et al. 2008; Venken et al. 
2008b; Korporal et al. 2008; Hong et al. 2005). Taken 
together, these observations imply the interaction 
between DC and Treg as a specific target for therapy 
development in MS.

MESENCHYMAL STEM CELLS
Mesenchymal stem cell (SC) form a cell population 
consisting of heterogenous stromal precursor cells with 
complex phenotypic and functional characteristics 
including ability to differentiate to various mesenchy-
mal tissues (Pittenger et al. 1999; Dominici et al. 2006). 
Apart from their capacity to support tissue repair, mes-
enchymal SC demonstrate pronounced immunoregula-
tory properties. In experimental settings, mesenchymal 
SC have been shown to modulate a vast range of func-
tional aspects of various immune cell types including: 
differentiation, proliferation and/or activation of Th1, 
Th2 and Th17 cells (Darlington et al. 2010; Ghannam 
et al. 2010; Patel et al. 2010; Ge et al. 2010), γδ T cells, 
natural killer (NK) cells and NK T cells (Spaggiari et al. 
2008; Prigione et al. 2009); generation of Tregs (Ghan-
nam et al. 2010; Patel et al. 2010; Ge et al. 2010); dif-
ferentiation and immunoglobulin secretion by B cells 
(Asari et al. 2009); activation of monocytes (Cutler et 
al., 2010); maturation and function of DCs (Spaggiari 
et al. 2009; Aldinucci et al. 2010); recruitment and acti-
vation of neutrophils (Brandau et al. 2010), as well as 
microglial response to microbial products (Ooi et al. 
2010). The immunoregulatory activity of mesenchy-
mal SC was demonstrated to be dependent both on a 
direct cell-to-cell contact (Aldinucci et al. 2010) and 
a variety of humoral factors including TGF-β (Patel et 
al., 2010; Nemeth et al., 2010), IL-10 (Crop et al. 2009), 

PGE2 (Ghannam et al. 2010; Spaggiari et al. 2008), as 
well as soluble products of enzymatic activity of induc-
ible nitric oxide synthase (iNOS) (Ren et al. 2008) and 
indoleamine-2,3-dioxygenase (IDO) (Spaggiari et al. 
2008; Ge at al. 2010; Crop et al. 2009). The immune 
function of mesenchymal SC was reported as beneficial, 
e.g. in transplantation research (Crop et al. 2009; Ge et 
al. 2010) or neuroprotection (Kim et al. 2009; Kemp 
et al. 2010) but also as detrimental in regard to host 
defense against tumor cells (Patel et al. 2010). 

The immunoregulatory role of mesenchymal SC 
has also been clearly demonstrated in immune demy-
elination. EAE studies performed in the last few years 
proved that intravenous (Zappia et al. 2005), intraperi-
toneal (Gordon et al. 2010) or intraventricular (Kassis et 
al. 2008) transfer of syngeneic (Zappia et al., 2005), allo-
geneic (Rafei et al. 2009a) or even xenogeneic (Zhang 
et al. 2005) mesenchymal SC resulted in a disease pro-
tection or amelioration depending on the time-point of 
transplantation. The clinical effects of mesenchymal SC 
transplantation were on the histopathological level par-
alleled by reduced extent of demyelination (Zappia et 
al. 2005; Zhang et al. 2005; Gordon et al. 2010), increase 
in remyelination (Constantin et al. 2009), as well as by 
significant protection of axons (Constantin et al. 2009; 
Gerdoni et al. 2007; Zhang et al. 2006). In the majority of 
the studies, immune mechanisms associated with mes-
enchymal SC transfer involved suppression of antigen 
specific proliferation of effector cells (Zappia et al. 2005; 
Zhang et al. 2005; Kassis et al. 2008) and shift of the 
proinflammatory Th1/Th17 immune reaction towards 
Th2 response, accompanied by down-modulation of 
proinflammatory cytokines production (Zappia et al. 
2005; Rafei et al. 2009a; Constantin et al. 2009; Gerdoni 
et al. 2007; Bai et al. 2009; Rafei 2009b). Additionally, 
the involvement of various growth and trophic factors 
has been suggested (Zhang et al. 2005; Zhang et al. 2006; 
Constantin et al. 2009; Berhum et al. 2010). Interestingly, 
there is no consensus regarding the CNS migration of 
transplanted SC. While some of the authors suggested 
peripheral lymphoid organs as a main place of immu-
noregulatory action of transplanted mesenchymal SC 
(Zappia et al. 2005; Gerdoni et al. 2007; Matysiak et al. 
2008), others describe also clear accumulation of these 
cells in the demyelinated areas of CNS (Gordon et al. 
2010, Constantin et al. 2009; Bai et al. 2009; Kassis et al. 
2008). In our EAE experiments, we transferred intra-
venously bone marrow Lin-Sca1+ SC (a pluripotent 
fraction of bone marrow SC depleted of hematopoietic 
precursors and enriched in mesenchymal SC) to EAE 
animals at the peak of disease (Matysiak et al. 2008). 
The SC transplantation accelerated clinical recovery 
and prevented subsequent disease relapses. The clinical 
effect was associated with significant decrease of Wal-
lerian degeneration, pronounced signs of diffuse remy-
elination and only moderate reduction of inflammation 
and demyelination. The transplanted SC accumulated 
in peripheral organs and – to a much lower extent – in 
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CNS, where their presence was constricted predomi-
nantly to meningeal regions. In functional experiments 
we demonstrated that SC transplantation resulted in an 
inhibition of antigen specific proliferation and abroga-
tion of antigen spreading process, associated with high 
secretion of IFN-γ. Furthermore, we showed that the 
suppressed proliferative responses were dependent on 
increased IDO expression specifically in CD11+ DCs 
(Matysiak et al. 2008). These observations contribute 
to the complexity of immune mechanisms associated 
with mesenchymal SC and accentuate the role of other 
immunoregulatory cell types as mediators of SC activ-
ity in the periphery. 

The clinical experience with the intravenous or 
intrathecal transplantation of mesenchymal SC in MS 
patients encompasses few studies with a very limited 
cumulative number of patients. Although we still need 
more data from well controlled clinical trials, the feasi-
bility and safety of the procedure, as well as the prelimi-
nary clinical effects seem to be promising (Liang et al. 
2009; Karussis et al. 2010).

ASTROCYTES
Although astrocytes are the main cellular components 
of the typical MS lesion (Smith & Sommer 1992), 
their involvement in immunopathogenesis of MS has 
been investigated less comprehensively than the role 
of immune cells or oligodendrocytes. Nonetheless, 
accumulating evidence suggests that astrocytes play a 
substantial role in the modulation of immune processes 
associated with autoaggressive demyelination. Expres-
sion of adhesion molecules (Archambault et al. 2006), 
metalloproteinases and their inhibitors (Teesalu et al. 
2001; Thorne et al. 2009), as well as secretion of various 
chemokines (Calderon et al. 2006; Quinones et al. 2008) 
allow astrocytes to regulate trafficking of immune cells, 
including DCs (Ambrosini et al.2005), across brain-
blood barrier and in CNS parenchyma. Moreover, it 
was demonstrated that, under inflammatory stimula-
tion, astrocytes were able to express MHC class II and 
co-stimulatory molecules (Cornet el al. 2000), present 
myelin antigens to effector cells (Tan et al. 1998) and 
regulate the myelin specific autoimmune response 
(Xiao et al. 1998). The APC-like surface expression pro-
file of astrocytes was also reported in active MS lesions 
(Ransohoff & Estes 1991; Lee et al. 1990). Additionally, 
astrocytes were shown to influence the CNS immune 
homeostasis by a direct cell-to-cell contact (Kim et al. 
2010) and by surface expression or secretion of differ-
ent immune active molecules, including members of 
TNF superfamily and nitric oxide (NO) (Thangarajh et 
al. 2007; Plant et al. 2005; Wilms et al. 2010; Raine et al. 
1998). The production of NO by astrocytes is activated 
by tissue damage or inflammatory signals and depends 
mainly on the enzymatic activity of iNOS. Expression 

of iNOS have been reported in astrocytes accumulating 
in active MS lesions (Oleszek et al. 1998; Liu et al. 2001; 
Broholm et al. 2004) and activity of this enzyme was 
associated with demyelination and axonal loss (Hill et 
al. 2004; Garthwaite et al. 2002; Jack et al. 2007). The 
expression of iNOS, similar to the expression of vari-
ous pro-inflammatory cytokines, requires activation of 
transcriptional factor NF-κB. In our experiments we 
analyzed the possibility to modulate the NF-κB signal-
ing and iNOS expression in astroglial cells with a spe-
cific proteasome inhibitor - lactacystin (Stasiolek et al. 
2000). Unexpectedly, we found a biphasic – inhibitory 
and stimulatory effect of lactacystin on the NO produc-
tion induced by microbial products and pro-inflamma-
tory cytokines. The results depended on the lactacystin 
concentration and the time of incubation. Moreover, 
delaying addition of lactacystin until several hours 
after inflammatory stimuli reversed the effect on iNOS 
activity. The differences in NO production were paral-
leled by modulation of iNOS expression, dependent on 
NF-κB activation. Interestingly, we demonstrated that 
the observed biphasic effects of lactacystin on iNOS 
promoter activity were associated with preferential 
increase of one of the NF-κB inhibitors, IκB-β (Sta-
siolek et al. 2000). These results, demonstrating very 
complex regulatory pathways in astroglial cells, are of 
particular meaning with regard to the possible thera-
peutic applications in autoimmune demyelination.

CONCLUSION
The immunoregulatory processes associated with 
myelin antigens are the putative place of dysfunction 
resulting in autoimmune demyelination and, thus, also 
the possible aim of new therapeutic attempts. Although 
our knowledge about particular cellular and humoral 
components of immunoregulatory circuits is constantly 
growing, we need to concentrate more specifically on 
their mutual interactions, both in the periphery and 
under specific conditions of CNS.
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