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Abstract OBJECTIVE: Bacterial lipopolysaccharide (LPS) causes lipid peroxidation 
(LPO). We have found that LPS induces LPO in vitro, in tissue homogenates in a 
concentration-dependent manner, the concentration of 400 µg/ml demonstrating 
the most efficient lipid damaging effect .
Both melatonin and its precursor, N-acetylserotonin, must possess antioxidant 
activities, both in vivo or in vitro, however, following some claims, N-acetylsero-
tonin is a more effective extra- and intracellular antioxidant than melatonin. 
The aim of our study was to compare the effects of melatonin and N-acetylsero-
tonin on the LPS-induced LPO in vitro. 
METHODS: Malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA) concentra-
tions were measured as the indices of induced membrane peroxidative damage in 
brain, liver and kidney homogenates. Both melatonin and N-acetylserotonin were 
used at increasing concentrations, starting from 0.01–5 mM, together with LPS at 
one concentration level of 400 µg/ml. 
RESULTS: In all the examined tissues, LPS stimulated LPO, while both melatonin 
and N-acetylserotonin decreased LPS-stimulated LPO. Furthermore, the capacity 
of N-acetylserotonin reducing LPO was higher than that of melatonin. 
CONCLUSIONS: The results of the reported study clearly indicate that N-ace-
tylserotonin is a much stronger antioxidant in vitro than melatonin in terms of 
reducing oxidative damage to lipid membranes. However, it remains still unclear 
how the features relate to in vivo circumstances. 

Introduction

LPS, a lipopolysaccharide from Gram-negative 
bacteria and an endotoxin, induces peroxidation 
of lipids (Kheir-Eldin et al. 2001; Portoles et al. 
1993; Yoshikawa et al. 1994) and, consequently, 
causes oxidative damage in many tissues (Okabe 
et al. 1994; Sewerynek et al. 1995a; 1995b; 1995c). 

For example, exogenous administration of LPS 
causes lung and liver lipid peroxidation, indirectly 
manifested by increased levels of malonaldehyde 
(MDA) and conjugated dienes (Nowak et al. 1993; 
Kouno et al. 1994; Sewerynek et al. 1995d). In 
many in vivo and in vitro animal models, a rela-
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tionship has been demonstrated between LPS admin-
istration and the resulting overproduction of reactive 
oxygen species, including superoxide anion (O2

•−), 
hydroxyl radical (•OH) and nitric oxide (NO•). In sev-
eral model systems, free radicals have been postulated 
to be important mediators of tissue injury (Bautista & 
Spitzer 1990; Jiang-Shieh et al. 2005; Shuter et al. 1990; 
Silva et al. 2004; Yoshikawa et al. 1994). An administra-
tion of antioxidants decreases LPS-induced biochemi-
cal and physiological changes.

Melatonin is effective in neutralizing a number of 
oxygen-based and nitrogen-based toxic agents,, some of 
which are radicals, while other are related metabolities 
(Allegra et al. 2003; Gitto et al. 2009; Peyrot & Ducrocq 
2008; Reiter et al. 2009; Tengattini et al. 2008). Melatonin 
detoxifies the highly potent •OH (Poeggeler et al. 1994; 
Stasica et al. 1998; Tan et al. 1998; Tan 1993), hydrogen 
peroxide (H2O2), singlet oxygen (1O2), hypochlorous 
acid (HOCl), O2

•−, NO•, peroxynitrite anion (ONOO−) 
and other free radical scavengers (Matuszak et al. 2003; 
Mei et al. 2005; Tan et al. 2000; Ximenes et al. 2005; 
Zavodnik et al. 2004). The pineal hormone is highly 
lipophilic and quite hydrophilic as well and it readily 
enters subcellular compartments (Menendez-Pelaez & 
Reiter 1993). Melatonin in vivo also protects against 
oxygen toxicity induced by paraquat, a toxic herbicide 
(Melchiorri et al. 1996b; Melchiorri et al. 1998), carbon 
tetrachloride (Daniels et al. 1995), potassium bromate 
(Karbownik et al. 2006), adriamycin (Dabrowska et 
al. 2008), amyloid beta (Masilamoni et al. 2008) and 
aflatoxin B1 (Gesing & Karbownik-Lewinska 2008). 
The protective effect of melatonin was also observed 

after LPS-induced oxidative damage in many tissues 
(Sewerynek et al. 1995b; Sewerynek et al. 1995a; Sew-
erynek et al. 1995c; Sewerynek et al. 1996; Chen et al. 
2006; Tamura et al. 2009). Additionally, melatonin has 
been reported to decrease lipid peroxidation in rats in 
L-thyroxin-induced thyrotoxicosis (Wiktorska et al. 
2010; Wiktorska et al. 2005) and after pharmacological 
doses of iodine (Sewerynek et al. 2006; Swierczynska-
Machura et al. 2004). 

Several indole products exhibit antioxidative proper-
ties, including N-acetylserotonin, an immediate mela-
tonin precursor (Behrends et al. 2007; Poeggeler et al. 
2002; Qi et al. 2000; Keithahn & Lerchl 2005; Gavazza 
& Catala 2004). N-acetylserotonin, compared to mela-
tonin, has an additional hydroxy group in position 
5 of the indole ring (Figure 1). The concentrations of 
both indoles diminish with age (Miguez et al. 1998). 
Both melatonin and N-acetylserotonin exert protective 
effects against free radical-mediated damage, induced 
by xenobiotics (Bachurin et al. 1999; Calvo et al. 2001). 
There has been some evidence, suggesting that N-ace-
tylserotonin may be a more effective extra- and intracel-
lular antioxidant than melatonin (Wolfler et al. 1999).

The ability of melatonin and N-acetylserotonin to 
protect against LPS-induced toxicity in vitro was tested 
in the reported study. The concentration of malon-
aldialdehyde (MDA) plus that of 4 hydroxyalkenals 
(4-HDA) in liver, kidney and brain homogenates were 
used as an index of induced oxidative damage to lipid 
membranes.

Materials and Methods
Reagents
Lipopolysaccharide (LPS) (from Escherichia coli, sero-
type 0111:B4), melatonin, N-acetyserotonin and fer-
rous sulfate were obtained from Sigma-Aldrich, St. 
Louis, US). A Bioxytech LPO-586 kit, purchased from 
the Cayman Chemical (Ann Arbor, MI), was used in 
measurements of lipid peroxidation products. All the 
other reagents were of the highest, available quality.

Methods
Six groups, of 6 adult Wistar male rats (200 ± 40 g BW) 
in each, were housed in plexi cages with 3 animals per 
cage. The animal rooms were windowless with auto-
matic temperature (22 ± 1 °C) and lighting control (light 
on at 07.00 h and off at 21.00 h; 14 h light/10 h dark). 
The rats received standard laboratory chow and water 
ad libitum. Melatonin and N-acetylserotonin were dis-
solved in absolute ethanol (when added to tissue homog-
enates, the final concentration of alcohol was 1%). 
LPS was dissolved in 20 mM Tris-HCl buffer, pH 7.4.

Tissue preparation and assays
The rats were anesthesized with ether and decapitated. 
Livers, kidneys and brains were removed, frozen and 
kept at –80 °C until homogenate preparation. On the 

Fig. 1. Biochemical scheme of melatonin (A) and 
N-acetylserotonin (B).
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day of assay, the tissues were homogenized in ice-cold 
20 mM Tris-HCl buffer, pH 7.4, with a Polytron-like 
stirrer to produce a 1/10 homogenate. The homog-
enates of each tissue were incubated in a water bath 
at 37 °C. LPS was used at concentration of 400 µg/
ml and after 30-minute incubation (Sewerynek et al. 
1995c). Melatonin and N-acetylserotonin (0.01–5 mM) 
were used in combination with LPS (400 µg/ml). Liver 
homogenates were supplemented with FeSO4 (10 µM) 
to stimulate lipid peroxidation (Sewerynek et al. 1995c). 
After incubation, the homogenates were centrifuged at 
2500 × g for 5 min at 4 °C. The supernatant was col-
lected and immediately assayed for lipid peroxidation 
products: MDA+4-HDA, which are commonly used 
lipid peroxidation indices (Esterbauer & Cheeseman 
1990). A Bioxytech LPO-586 kit was used for this pur-
pose (Melchiorri et al. 1996a). This kit takes advantage 
of a cromogenic reagent, which reacts with MDA and 
4-HDA at 45°C, yielding a stable chromophore with 
a maximal absorbance at the 586 nm wavelength. The 
light wavelength and the low temperature of incubation 
(45 °C), used in the procedure, eliminated interference 

and undesirable artifacts. Protein concentrations were 
determined by Branford’s method, using bovine serum 
albumin as standard (Bradford 1976).

Statistical analyses
The data were analyzed, using the one-way analysis of 
variance (ANOVA) and student’s t-test. If F values were 
significant, the Student-Newman-Keuls t-test was used. 
All the calculations were performed with the use of the 
Statistica ‘99 computer software. The level of signifi-
cance was accepted at p<0.05.

RESULTS

LPS stimulated lipid peroxidation in all the studied 
tissue homogenates (Figures 2–4). Both melatonin and 
N-acetylserotonin were effective in reducing the stimu-
latory effect of LPS on lipid peroxidation in each tissue 
(Figures 2–4). Melatonin concentrations, required for 
significant reduction of induced lipid peroxidation 
were: 2.5 and 5 mM, regarding brain homogenates, 
0.5–5 mM for kidney homogenates, and 0.01–5 mM 

Fig. 2. Effects of different concentrations of melatonin (A) and N-acetylserotonin (B) (0.01–5 mM) on lipid peroxidation, induced by 
lipopolysaccharide (LPS; 0.4 g/mL) in brain homogenates. The values are means ± SEM. #p<0.001 vs. the control group (without LPS and 
melatonin); *p<0.001; **p<0.05 vs. the LPS group without melatonin.

Fig. 3. Effects of different concentrations of melatonin (A) and N-acetylserotonin (B) (0.01 – 5mM) on lipid peroxidation, induced by 
lipopolysaccharide (LPS; 0.4 g/mL) in kidney homogenates. The values are means ± SEM. #p<0.001 vs. the control group (without LPS and 
melatonin); *p<0.001 vs. the LPS group without melatonin. 
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for liver homogenates. N-acetylserotonin concentra-
tions, required for significant reduction of induced 
lipid peroxidation was 0.1–5 mM in brain homogenates, 
0.01–5 mM for kidney homogenates and 0.01–5 mM for 
liver homogenates. 

The results clearly show that the used antioxidants 
decreased LPS-stimulated lipid peroxidation in all the 
examined tissues. Furthermore, lipid peroxidation sup-
pression, exerted by N-acetylserotonin in brain and 
kidney homogenates was higher than that exerted by 
melatonin (Figures 5–7) (see Table 1).

DISCUSSION

LPS, a Gram-negative bacterial endotoxin, induces a 
variety of biological responses and diseases (Berdeaux 
1993). Some of LPS effects result from anaphylatoxin 
production, while other ones involve the release of bio-
chemical mediators, including histamine, serotonin, 
kinins and platelet-activating factors by the reticuloen-
dothelial system. Additionally, LPS directly inhibits both 
glucose and lipid metabolism, activates protein kinase 
C, stimulates proinflammatory mediators (cytokines, 
Nuclear Factor – kappaB), causes lipid peroxidation 
via the induction of free radical formation and directly 
induces cellular damage (Berdeaux 1993; Li et al. 2005).

Lipid peroxidation plays a significant role in oxidative 
pathology. Some relationship has been demonstrated 

between LPS administration and the overproduction 
of free radicals (Li et al. 2005; Yoshikawa et al. 1994). 
Several radical products, including O2

•− and the •OH, 
as well as other toxic oxygen metabolites, including 
H2O2 and HOCl, have been postulated to be important 
mediators in models of tissue injury (Bautista & Spitzer 
1990; Shuter et al. 1990). LPS also stimulates nitric 
oxide synthase (NOS), the enzyme which catalyzes 
L-arginine oxidation to citrulline and NO• (Jiang-Shieh 
et al. 2005). NO congeners are either neuroprotective 
or neurodestructive, depending on NO redox states 
(Lipton et al. 1993). NO•-mediated neurotoxicity is, in 
part, a consequence of its reaction with O2

•−, leading to 
ONOO− formation, i.e., a highly toxic substance. Also, 
at low concentrations of L-arginine, LPS stimulates the 
production of O2

•− and H2O2, the effect being blocked 
by Nw-nitro-L-arginine, a selective NOS blocker (Sessa 
1994).

There are several enzyme systems in tissues with 
a number of cellular components that protect them 
against activated oxygen forms, those protective ele-
ments including superoxide dismutase (SOD), catalase, 
reduced glutathione (GSH) and glutathione peroxidase 
(GSH-Px), vitamin E and ascorbic acid. Antioxidative 
enzyme activities have been measured both in vivo and 
in vitro, following LPS-administration. When hepa-
tocyte monolayers are treated with LPS (50 µg/ml for 
2 h), the endotoxin induces lipid peroxidation (Portoles 

Tab. 1. Efficacy of lipid peroxidation inhibition by Melatonin and N-acetylserotonin in brain, kidney and liver homogenates.

Tissue Concentration
Melatonin 

(MEL)
N-acetyloserotonin 

(NAC-5HT) Comparison

Mean (%) SEM Mean (%) SEM  

BRAIN 5 mM 41.13 3.41 96.79 0.23 p<0.001

2.5 mM 27.69 4.04 95.27 0.26 p<0.001

1 mM 11.93 5.49 38.03 3.70 p<0.01

0.5 mM 14.42 4.78 39.35 3.39 p<0.01

0.1 mM –0.64 5.72 19.61 4.83 p<0.05

0.01 mM 6.02 5.37 8.24 8.93 Not significant

LIVER 5 mM 94.05 0.23 96.16 0.14 p<0.001

2.5 mM 91.48 0.41 94.49 0.23 p<0.001

1 mM 80.26 0.44 92.84 0.11 p<0.001

0.5 mM 61.95 0.91 91.26 0.15 p<0.001

0.1 mM 30.75 2.34 65.49 0.48 p<0.001

0.01 mM 14.86 1.89 20.13 1.27 Not significant

KIDNEY 5 mM 72.59 0.39 88.02 0.54 p<0.001

2.5 mM 44.73 0.81 85.32 0.40 p<0.001

1 mM 20.01 1.12 80.08 0.38 p<0.001

0.5 mM 10.42 1.85 69.89 0.42 p<0.001

0.1 mM 0.99 1.37 20.76 1.25 p<0.001

0.01 mM –3.05 1.43 2.64 1.36 p<0.05
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et al. 1993). At the same time, the authors reported an 
increased SOD activity, demonstrating a potentially 
protective role of this enzyme against the toxic effects of 
O2

•−. Additionally, a similar stimulatory action of SOD 
was found in astrocytes, cultured with LPS (1 µg/ml for 
3  days) (Mokuno et al. 1994). In our previous paper, 
melatonin also enhanced GSH-Px in LPS-treated ani-
mals, GSH-Px being another important antioxida-
tive enzyme (Sewerynek et al. 1995b). Additionally, 
LPS diminished cytochrome P450 reductase content, 
while that effect was largely prevented by nitric oxide 
synthase inhibitor: N-nitro-L-arginine methyl ester 
(L-NAME) administration. Melatonin did not change 
P450 content, either in phenobarbital- or LPS-treated 
animals. Thus, LPS induced, at least, two antioxidative 
enzymes, SOD and GSH-Px, which could possibly help 
protect tissues from LPS-induced oxidative stress.

Fig. 4. Effects of different concentrations of melatonin (A) and N-acetylserotonin (B) (0.01–5 mM) on lipid peroxidation, induced by 
lipopolysaccharide (LPS; 0.4 g/mL) liver homogenates. The values are means SEM. #p<0.001 vs. the control group (without LPS and 
melatonin); *p<0.001;**p<0.05 vs. the LPS group without melatonin.

Fig. 7. Percentages of lipopolysaccharide (LPS)-induced lipid 
peroxidation suppression by melatonin and N-acetylserotonin in 
liver homogenates. The values are means (%) ± SEM.

Fig. 5. Percentages of lipopolysaccharide (LPS)-induced lipid 
peroxidation suppression by melatonin and N-acetylserotonin 
in brain homogenates. The values are means (%) ± SEM. 

Fig. 6. Percentages of lipopolysaccharide (LPS)-induced lipid 
peroxidation suppression by melatonin and N-acetylserotonin 
in kidney homogenates. The values are means (%) ± SEM. 
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GSH-Px activity. When the animals were injected with 
LPS, the levels of total glutathione (tGSH) and GSSG 
were significantly higher, when compared with other 
groups, while melatonin and L-NAME significantly 
enhanced tGSH, when compared with that in the LPS-
treated rats. Melatonin alone reduced GSSG levels. 

In conclusion, the results of the reported study indi-
cate that N-acetylserotonin is more effective from mela-
tonin in reducing lipid peroxidation in vitro. 
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