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Abstract Among the most readily available chemical warfare agents, sulfur mustard (SM) 
has been the most widely used chemical weapon. The toxicity of SM as an inca-
pacitating agent is of much greater importance than its ability to cause lethality. 
Oxidative stress is the first and key event in the pathogenesis of SM toxicity. The 
involvement of inducible nitric oxide (iNOS) in SM toxicity, however, also leads 
to elevated nitrosative stress; thus, the damage caused by SM is nitro-oxidative 
stress because of peroxynitrite (ONOO–) production. Once ONOO– is formed, 
it activates nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) leading to 
pro-inflammatory gene expression thereby promoting inflammation; additionally, 
ONOO– directly exerts harmful effects by damaging all biomolecules including 
lipids, proteins and DNA within cells. DNA damage is sensed by an important 
DNA repair enzyme, poly (ADP-ribose) polymerase (PARP); this enzyme repairs 
molecular damage by using nicotinamide adenine dinucleotide (NAD+) as a 
substrate. Over-activation of PARP, due to severe DNA damage, consumes vast 
amounts of the respiratory coenzyme NAD+ leading to a cellular energy crisis. 
This pathophysiologic mechanism eventually results in cellular dysfunction, 
apoptosis or necrosis. Therefore, classic antioxidants may have limited beneficial 
effects on SM toxicity. Melatonin is a multifunctional indolamine which counter-
acts virtually all pathophysiologic steps and displays significant beneficial effects 
against ONOO–-induced cellular toxicity. Melatonin has the capability of scaveng-
ing both oxygen and nitrogen-based reactants including ONOO– and blocking 
transcriptional factors which induce pro-inflammatory cytokines. The delayed 
toxicity of SM, however, currently has no mechanistic explanation. We propose 
that epigenetic aberrations may be responsible for delayed detrimental effects of 
mustard poisoning. Therefore, as a putative epigenetic modulator, melatonin may 
also be beneficial to subjects with delayed toxicity of SM.
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INTRODUCTION 
Among the available chemical warfare agents, sulfur 
mustard (SM), also known as mustard gas, has been 
a widely used chemical weapon. Because of its devas-
tating toxicity, its use during the World War I earned 
it the sobriquet “king of the battle gases”. Other com-
pounds such as nitrogen mustard (HN2) were devel-
oped during World War II, but found to be unsuitable 
as a munition. Soon after discovering HN2, it became 
the first non-hormonal agent used in cancer chemo-
therapy. A number of HN2 derivatives including cyclo-
phosphamide (CP), ifosfamide (IF), mechlorethamine, 
melphalan and chlorambucil are valuable cytotoxic and 
radiomimetic agents for the treatment of cancer [22].

PROPOSED MECHANISM 
OF ACUTE TOXICITY
After several decades of research in our laboratory, 
it was revealed that SM, CP and other toxic agents 
share most of the same pathophysiologic mechanisms. 
Recent data consistently proves that reactive oxygen 
species (ROS) [42], nitric oxide (NO•) [26] produced 
by inducible nitric oxide synthase (iNOS) [41], and 
most importantly peroxynitrite (ONOO−) [27,72] are 
involved in initial detrimental effects of all mustards 
[25,28]. 

ONOO– is per se not a radical but is a powerful 
nitrosating agent. ONOO– interacts with and cova-
lently modifies all major types of biomolecules includ-
ing membrane lipids, thiols, proteins and DNA [43]. 
ONOO− activates matrix metalloproteinases (MMPs) 
and triggers the expression of selectins and cellular 
adhesion molecules, via enhancing NF-κB activation, 
thereby promoting pro-inflammatory responses [60]. 
The mutagenic properties of ONOO−-induced modi-
fied products have also been determined [20]. Single 
strand breakage can be induced by treatment with very 
low concentrations of ONOO− indicating that this 
agent is a potent inducer of DNA damage [73]. These 
observations suggest additional pathways by which 
ONOO− may be associated with not only elevated 
DNA damage but also impairment of DNA repair 
capacity [9]. ONOO− induces apoptosis and necrosis 
in cells. More highly elevated exposure of this agent 
is associated with necrosis rather than with apopto-
sis. In this mechanism, activation of the DNA repair 
enzyme poly (ADP ribose) polymerase-1 (PARP-1), a 
member of PARP enzyme family, mediates ONOO−-
induced necrosis [60,68]. PARP-1 detects and signals 
DNA strand breaks induced by a variety of genotoxic 
insults. Upon binding to DNA, strand breaks occur 
and, PARP transfers ADP-ribose units from the respi-
ratory coenzyme nicotinamide adenine dinucleotide 
(NAD+) to various nuclear proteins. From a physio-
logical view point, PARP-1 activity and poly(ADP)-
ribosylation reactions are implicated in DNA repair 

processes, the maintenance of genomic stability, the 
regulation of gene transcription, and DNA replica-
tion. An important function of PARP-1 is to allow 
DNA repair and cell recovery under conditions associ-
ated with a low level of DNA damage. In case of severe 
DNA injury, overactivation of PARP-1 depletes the cel-
lular stores of NAD+, an essential cofactor in the gly-
colytic pathway, the tricarboxylic acid cycle, and the 
mitochondrial electron transport chain. As a result, the 
loss of NAD+ leads to a marked reduction in the cellu-
lar pools of ATP, resulting in cellular dysfunction and 
cell death via the necrotic pathway. This is known as 
“suicide hypothesis” of PARP activation and seems to 
be a regulatory mechanism to eliminate cells after irre-
versible DNA injury [59]. Experimental evidence has 
established that the PARP-1 pathway of cell death plays 
a pivotal role in tissue injury and organ dysfunction in 
mustard-induced acute toxicity [23,29]. 

BENEFICIAL EFFECTS OF MELATONIN 
AGAINST ACUTE SM TOXICITY
There is a large body of evidence that melatonin is 
major scavenger of both oxygen and nitrogen based 
radicals including ONOO− [1,21,45,47]. Melatonin 
has scavenging actions at both physiologic and phar-
macologic doses. Not only melatonin but also several 
metabolites also have the capability to detoxify free 
radicals and their derivatives [46,63]. Melatonin also 
supports several intracellular enzymatic antioxidant 
enzymes [58]. Melatonin is significantly better than 
other antioxidants in this regard, e.g. it is more effec-
tive than vitamin E [5]. In many inflammatory proc-
esses, ONOO− rather than oxygen-based radicals is 
the predominant molecule which decides the fate of 
cells. Once formed, ONOO− cannot be scavenged by 
conventional antioxidants. As a multifunctional anti-
oxidant, however, melatonin and its metabolites have 
unique features over the usual antioxidants including 
iNOS inhibition and ONOO− scavenging properties 
against mustard-induced acute toxicity [49,66,67,74].

Melatonin has been shown to ameliorate inflamma-
tion by blocking transcriptional factors and pro-inflam-
matory cytokines [39,50,69]. A large body of evidence 
confirms that these cytokines are capable of inducing 
formation of free radicals and promoting iNOS activ-
ity and transcriptional factor activation within cells. 
These events inevitably induce a vicious cycle of cel-
lular damage. In the case of ONOO−-induced DNA 
damage, PARP over-activates in an attempt to repair 
the genome, consumes NAD+ as a substrate which 
causes an energy crisis within cells leading to their 
eventual necrosis. Preservation of NAD+ and cellu-
lar energetics may be helpful for PARP to repair the 
DNA damage rather than blocking PARP. Melatonin 
preserves cellular energy production and ATP level in 
several pathologic circumstances [14,34,62].
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PROPOSED MECHANISM OF 
DELAYED SM TOXICITY 

Unfortunately, it is not clear how mustard gas causes 
severe multi-organ damage years after even a single 
exposure [3]. It is well known that most metabolites of 
mustard agents are excreted in the urine within a few 
weeks after exposure [56]. It is also well documented 
that mustard analogs such as CP and IF severely damage 
DNA and the gene environment. They have toxicity 
long after the initial exposure leading to cell death and 
an increased likelihood of cancer [55]. As noted above, 
the initial toxicity of mustards relates to a massive 
onslaught of highly reactive oxidizing and nitrosating 
molecules. For most mustard agents, once these changes 
occur the cellular effects essentially disappear. For SM, 
however, there are delayed progressive effects which 
render victims incapacitated for years [3,4,17,36,52]. 
The pathophysiologic mechanism of delayed SM toxic-
ity currently has no mechanistic explanation [31]. 

Cells that are intoxicated with SM and are repaired 
by PARP-1 seem to be responsible of the delayed toxic-
ity. These cells should be free of DNA damage, are able 
to divide but they also have either light to mild, but not 
severe damage. As explained previously, if the nuclear 
DNA in a cell is damaged, it is either repaired via sev-
eral means including DNA repair enzymes [40] or the 
cell eventually dies [60,61]. However, if SM causes not 
only DNA damage but also alters epigenetic processes, 
this could explain, at least in part, the delayed effects of 
this warfare agent. We propose that epigenetic perturba-
tions may be the underlying mechanism of the delayed 
effects of SM [7,35]. The term epigenetic describes the 
study of inheritable alterations in gene expression that 
occur in the absence of changes in genome sequence. 
This is in contrast to genetics, which deals with the 
transmission of information based on differences in 
DNA sequence. Therefore, epigenetic gene regulation 
requires molecular mechanisms that encode informa-
tion in addition to the DNA base sequence and can be 
propagated through mitosis and meiosis. Our current 
understanding of epigenetic gene regulation involves 
three classes of molecular mechanisms: DNA methyla-
tion, histone modifications and DNA-binding proteins 
[6,71]. 

The chromatin structure is influenced by DNA 
methylation and DNA-histone interactions. The DNA-
histone interaction is further influenced by covalent 
modification of histones and the action of DNA-bind-
ing proteins. The epigenotype can be transmitted from 
a parent cell to a daughter cell maintaining a specific 
epigenotype within cell lineages. Thus, the phenotype 
is a result of the genotype, the specific DNA sequence, 
and the epigenotype. The genotype must exist in a 
particular chromatin configuration, the epigenotype, 
which allows a secondary level of fine control over gene 
expression. The epigenotype shows far greater plasticity 
than the genotype, and it has been speculated that epi-

genetic errors could be a major contributor to human 
diseases [19]. Epigenotype is generally accepted as being 
less stable than the genetic system, and more sensitive 
to environmental [38], nutritional [16] and chemical 
toxicants [8,37].

Delayed toxicity of SM may occur in cells in which 
the genome has genetic and/or epigenetic mutations. If 
this is the case, delayed toxicity of SM may have a more 
diverse pathogenesis than acute toxicity and many ben-
eficial approaches in treatment of acute toxicity may not 
function for delayed toxicity. Data based on the experi-
ence in Iranian veterans exposed to the agent during 
the Iran-Iraq conflict (1983–88) have clearly shown that 
delayed toxicity of SM is almost incurable even with 
extensive treatments [2]. The first report on the delayed 
toxic effects of SM poisoning in 236 Iranian veterans 
revealed that the delayed toxicity of SM persists in the 
respiratory tract (78%), central nervous system (45%), 
skin (41%) and eyes (36%). These effects were recorded 
between 2 and 28 months after exposure. In a study by 
Khateri et al. (2003) on 34,000 Iranians, 13–20 years 
after exposure to SM, the most common complications 
occurred in lungs (42.5%), eyes (39%), and skin (24.5%) 
[24]. Balali-Mood et al. (2005) described the toxic 
effects of SM poisoning in a group of 40 severely intox-
icated Iranian veterans, 16–20 years after their initial 
exposure. The most commonly affected organs, in this 
study, were lungs (95%), skin (75%) and eyes (65%) [4]. 

POSSIBLE BENEFICIAL EFFECTS 
OF MELATONIN AGAINST 
DELAYED SM TOXICITY

Melatonin shows beneficial effects against SM-
induced acute toxicity as a multifunctional antioxidant 
and ONOO− scavenging agent [57,67]. Also, several 
well-explained effects of melatonin seem to derive from 
epigenetic actions of the indolamine. For example, 
melatonin possesses genomic actions and regulates the 
expression of several genes. Melatonin influences cel-
lular mRNA levels for antioxidant enzymes under both 
physiological conditions and during elevated oxidative 
stress [48]. The exact mechanism as to how melatonin 
stimulates antioxidant enzymes remains unclear. Con-
sistent evidence however, suggests that melatonin mod-
ulates antioxidant enzyme activities via interaction with 
calmodulin, which in turn modulates epigenetic activa-
tion leading to gene expression [64,65]. A number of 
known anti-inflammatory effects of melatonin, such as 
selective inhibition of iNOS and/or cyclooxygenase-2 
and MMPs clearly derive from melatonin and epige-
netic cross-talk and modification through suppression 
of NF-κB binding [15] and/or p300-HAT expression 
within the nucleus [13]. 

Several oncostatic actions of melatonin are related to 
epigenetic regulation of gene expression. For example, 
melatonin inhibits telomerase activity and decreases 
mRNA levels of telomerase reverse (TR) transcriptase, 
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the catalytic subunit of telomerase via epigenetic mech-
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co-regulator of a variety of nuclear receptors, involves 
many pathophysiologic mechanisms including those 
involved in breast cancer. A key event for the anti-
proliferative effects of anti-estrogens appears to be the 
down-regulation of cyclin D1 [10]. Melatonin has been 
shown to inhibit transcription of cyclin D1 expression 
[11] supporting the efficacy of melatonin on hormone-
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tors and inhibit tumor growth in murine breast cancer 
cells [70]. The action of melatonin in advanced cancer 
patients [33] also seems to result from a combination 
of effects on histone modification and DNA methyla-
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CONCLUDING REMARKS
Mustard gas is easy and inexpensive to produce, stable 
in storage and persistent in the environment. It inflicts 
casualties despite the use of respiratory or other types 
of protection and its potency is fairly high. Detection by 
odor is unreliable, although toxic levels can be noted; 
however, decontamination is difficult [54]. It causes 
delayed effects, producing no signs or symptoms until 
irreversible injury is inflicted leading to prolonged dis-
ability. Despite 75 years of research, there is still no anti-
dote for mustard. This fact is especially crucial when we 
consider that probably at least a dozen countries have 
mustard in their arsenals today. 

Melatonin has been administered in both physio-
logical and pharmacological amounts to humans and 
animals, and there is widespread agreement that it is 
a non-toxic molecule [51]. In pregnant rats, maternal 
lowest-no-observed-effect-level (LOAEL) has been 
found to be 200 mg/kg/day and developmental no-
observed-adverse-effect-level (NOAEL) is ≥ 200 mg/
kg/day [18]. Melatonin is easily synthesized in pharma-
cologically pure form, non-patentable, inexpensive and 
affordable; therefore, it has a great potential to improve 
the public health [44] as a multi-tasking molecule. 
Melatonin has non-genomic, genomic and epigenetic 
actions; all these actions may be beneficial in both acute 
and delayed mustard toxicity.

Epigenetic therapy is a new and rapidly developing 
field in pharmacology. To date, most trials of epigenetic 
drugs have been conducted to evaluate their effects on 
cancer, many of which have shown promising results. 
Epigenetic drugs alone or in combination with con-
ventional drugs may prove to be a significant advance 
over the conventional drugs used to treat both acute 
and delayed SM toxicity. Since epigenetic defects are 
thought to underlie a broad range of diseases, the scope 
of epigenetic therapy is likely to expand. 
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