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Abstract Human and invertebrate tissues have the ability to synthesize morphine, making 
it an endogenous chemical messenger. Given this new insight we sought to inves-
tigate whether substances of abuse have the ability to interact with endogenous 
morphine processes. Moreover we have shown that cocaine, alcohol and nicotine 
significantly enhance 125I-trace labeled morphine release from invertebrate gan-
glia and human white blood cells. These data and newer research contribute to an 
evolving hypothesis linking the reinforcing and addictive properties of a variety 
of drugs of abuse to convergent mechanisms, involving endogenous morphine 
signaling and establish an opiate foundation as a unifying principle by which we 
may advance our understanding of polymodal drug abuse mechanisms. 

1.

2.

Cocaine and heroin exert extreme control over 
behavior, while alcohol, nicotine or marijuana 
does not. Under ‘normal’ circumstances, absti-
nence seems to be possible with these substances 
more easily as indicated by the fact that the lat-
ter substances of abuse have become ‘socially ac-
cepted’ in many cultures [1–5]. Additionally per-
sonality, social and genetic factors may also play 
an important role in a substance of abuse’s actions 
[1,6–20]. In regard to alcohol this is especially true, 
considering wine virtues [21]. Addiction, there-
fore, appears to be a loss of control over pleasur-
able and biologically useful events (‘healthy drug 
use’), turning a positive motivation into a disaster 
[8,22–24]. We surmise this may be due to the fact 
morphine appears to be the “bottle-neck” reaction 
for substances of abuse as hypothesized by Stefano 
and colleagues [25,26].

Caffeine, alcohol and nicotine, given as exam-
ples, all activate brain reward pathways directly. 
Some of these drugs are known for their recreation-
al use, involving, for instance, desirable psycholog-
ical effects, such as relaxation and stress reduction 
[8,10,27]. Various addictive drugs share the com-
mon feature of stimulating the same dopaminergic 
brain reward system. For example, heroin enhanc-
es dopamine levels by increasing dopamine re-
lease, whereas cocaine inhibits dopamine reuptake. 
These actions has been related to their appetitive 
motivational effects [1,6,28]. 

Recently, normal healthy human white blood 
cells and invertebrate neural tissues were found 
to have the ability to synthesize morphine, open-
ing up a new world of comprehension concern-
ing endogenous morphine processing and signal-
ing [29–32]. Human morphine synthesis was, as 
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expected, dependant on its precursors, L-DOPA, reti-
culine, THP and tyramine, in a concentration-depen-
dent manner [29]. Furthermore, CYP2D6 appears to be 
a major enzyme regulating this pathway [29,30,33–38]. 
Importantly, it is noted that dopamine is a morphine 
precursor [31,32].

In a somewhat parallel story with opiate alkaloid in-
duced addiction [30], nicotine also addictive [39], sig-
nificantly enhanced125I-trace labeled morphine released 
from invertebrate ganglia into the extracellular medi-
um in a concentration dependent manner as did alco-
hol [40]. This also occurs in human white blood cells 
[41–43], suggesting that nicotine’s and alcohols effects 
occur via an enhancement of endogenous morphine’s 
signaling. Nicotine’s and alcohols addictive properties 
may arise from this ability to enhance endogenous mor-
phine levels, opening up a new level of understanding 
in substance induced addiction and behavioral effects 
as well as morphine regulation. 

Regarding alcohol, supporting this conclusion are 
the studies that demonstrate alcohol is addicting and 
interacts with the reward system of the human brain, 
including exogenous morphine actions [44–48]. We 
surmise ethanol’s addicting and short pleasure-promot-
ing properties may be related to its morphine enhanc-
ing effect and its depressing effect to reducing neural 
morphine levels.

Not surprisingly, cocaine also exerts its mechanism 
of action via the alteration of dopaminergic processes 
[49]. In both invertebrates and mammals cocaine inhib-
its the ability to reuptake released dopamine via block-
ing its transporter, allowing more dopamine to be pres-
ent for signaling [50,51]. We surmise that this dopamine 
may in time be channeled to the morphinergic system 
whereby morphine activity is enhanced. Furthermore, 
as recently demonstrated in invertebrate and human 
tissues cocaine promotes a statistically significant en-
hancement of 125I-trace labeled morphine release[40], 
which also occurs in human white blood cells [41], sug-
gesting that cocaine’s effect, in part, may occur via an 
enhancement of endogenous morphine’s signaling.  

The brain’s reward and motivation circuitry with its 
limbic components represents the crucial neurobiologi-
cal system underlying pleasure phenomena [8,10,11,30–
24,52–59]. It not only serves pleasure and motivation, 
but also involves aspects of behavior, reproduction and 
sexual activity, emotion, belief and trust, memory, cog-
nition, stress physiology and autonomic functions, re-
laxation and well-being – to name a few [7,8,10,60,61]. 
Neurotransmitters potentially acting on CNS structures 
are, for example, dopamine, GABA, glutamate, sero-
tonin, acetylcholine, morphine, nitric oxide, noradren-
aline, cortisol as well as endocannabinoids.

Natural rewards can be modulated by the activity 
of the brain’s reward and motivation circuitry. Feed-
ing, sexual activity or maternal behavior can be facil-
itated each by opiate activation of the reward system 

[9,62–64]. The VTA (i.e., ventral tegmental dopamine 
system) seems to provide an important neurochemi-
cal interface where exogenous opiates and endogenous 
opioid peptides can activate a CNS mechanism in-
volved in appetitive motivation and reward [1,8]. Ob-
viously, endogenous morphinergic signaling may also 
play a role [31,54,58]. This is especially true since en-
dogenous morphine biosynthesis may involve ele-
ments of dopamine metabolism [29,30,33,65], linking 
two signaling systems. Additionally, endogenous mor-
phine has been found in hippocampal tissues [66,67] 
and morphinergic signaling has been demonstrated to 
release constitutive nitric oxide here [68], linking mor-
phine to limbic structures and nitric oxide effects. Thus, 
the VTA serves as a appetitive motivation system for di-
verse behaviors, since it controls both normal and path-
ological behaviors [1,8,69,70]. 

Artificial rewards and drugs, in contrast to natu-
ral stimuli that work, for example, by moderate senso-
ry organ stimulation, are capable of acting directly on 
VTA and nucleus accumbens pathways, allowing only 
little flexibility and modulation to interfere (see above). 
Consequently, artificial rewards can diminish self-con-
trol and beneficial motivational behavior, leading to a 
potentially dangerous or detrimental outcome, i.e., mo-
tivational toxicity [1]. They may therefore be consid-
ered biologically senseless. 

Moreover, reward substrates that directly act on the 
brain’s reward pathways are more potent than other re-
wards, such as food or water: subjects prefer to choose 
self-imposed starvation when forced to make a choice 
between obtaining food and water or direct electrical 
stimulation of the reward circuitry [1,71,72]. We can as-
sume that nature has not made preparation, that is, has 
not planned for this artificial short-cut to occur. The 
psychiatric implications of this system have been exam-
ined as well, including brain reward circuitry [8,73–75]. 
Interestingly, with this link we find a strong connec-
tion or convergence of neurobiology, i.e., substances of 
abuse, endogenous morphine, with behavior, i.e., addic-
tion and pleasure/reward behaviors, and yet, with dis-
ease states. Thus, these data and newer research con-
tribute to an evolving hypothesis linking the reinforcing 
and addictive properties of a variety of drugs of abuse 
to convergent mechanisms involving endogenous mor-
phine signaling and establish an opiate foundation as a 
unifying principle by which we may advance our un-
derstanding of polymodal drug abuse mechanisms. 
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