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Abstract
The impact of breast cancer on women across the world has been extensive and severe. As prevalence 

of breast cancer is greatest in industrialized regions, exposure to light at night has been proposed as a 
potential risk factor. This theory is supported by the epidemiological observations of decreased breast 
cancer in blind women and increased breast cancer in women who do shift-work. In addition, human, 
animal and in vitro studies which have investigated the melatonin-cancer dynamic indicate an apparent 
relationship between light, melatonin and cancer, albeit complex. Recent developments in understand-
ing melatonin regulation by light in humans are examined, with particular attention to factors that 
contribute to the sensitivity of the light-induced melatonin suppression response. Specifically, the role 
of spectral characteristics of light is addressed, and recent relevant action spectrum studies in humans 
and other mammalian species are discussed. Across five action spectra for circadian and other non-visual 
responses, a peak sensitivity between 446–484 nm was identified. Under highly controlled exposure 
circumstances, less than 1 lux of monochromatic light elicited a significant suppression of nocturnal 
melatonin. In view of the possible link between light exposure, melatonin suppression and cancer risk, it 
is important to continue to identify the basic related ocular physiology. Visual performance, rather than 
circadian function, has been the primary focus of architectural lighting systems. It is now necessary to 
reevaluate lighting strategies, with consideration of circadian influences, in an effort to maximize physi-
ological homeostasis and health.
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Ocular Input for Human Melatonin 
Regulation: Relevance to Breast 
Cancer Risk
Breast cancer is the most common form of malignancy 

found in women and the second leading cause of cancer 
mortality. Based on epidemiological evidence collected 
from 1995 to 1997, the National Cancer Institute esti-
mates that approximately 1 in 8 women in the United 
States will develop breast cancer during her lifetime. 
Identified risk factors for female breast cancer include: 
early age at onset of menarche, late age at onset of meno-
pause, first full-term pregnancy after age 30, history of 
pre-menopausal breast cancer for mother and/or a sister, 
and a personal history of breast cancer or benign prolif-
erative breast disease. Environmental conditions associ-
ated with technological advancements also appear to be 
indicative of an increased risk, with a much higher preva-
lence of breast cancer in industrialized regions as com-
pared to that of developing nations. Consequently, theo-
ries about the potential role of exposure to light at night 
have been proposed [1, 2]. The theory that nighttime 
light exposure may be a risk factor for cancer is suggested 
by the suppressive effects of nocturnal light on pineal 
melatonin [3,4] and the decrease in melatonin production 
that has been associated with increased risk of breast 
cancer [5]. A wide range of human, animal and in vitro 
studies further support this theory [6].

Studies have repeatedly shown a simultaneous decline 
in melatonin and an increase in tumor growth in pre-
operation breast cancer patients [7] and in rats with 
chemically induced and transplanted mammary tumors 
[8]. In addition, pinealectomy, which inhibits melatonin 
production, serves to promote growth of induced mam-
mary cancers in rats [9,10]. Similarly, light administered 
during an otherwise normal dark phase also inhibits 
host melatonin secretion and increases the rate of tumor 
growth in rats [11, 12]. It is, therefore, not surprising 
that both physiological and pharmacological administra-
tion of melatonin demonstrate oncostatic properties [6]. 
Melatonin appears to inhibit mammary tumorgenesis 
in rats [13] and block estrogen-induced proliferation of 
human breast cancer cells [14]. One study found that 
large doses of melatonin did not inhibit estradiol-induced 
proliferation in vivo, and pinealectomy did not increase 
proliferation, suggesting that melatonin may not work 
directly to inhibit estradiol-induced proliferation [15]. 
While the mechanisms involved in the melatonin-can-
cer relationship remain uncertain, estradiol [15, 16,17], 
tumor fatty acid metabolism [18], and linoleic acid [12] 
appear to be important factors in the regulation of tumor 
progression. Taken together, recent studies indicate a 
complex dynamic between melatonin and breast cancer, 
although a relationship seems evident in certain experi-
mental models [6].

Epidemiological evidence supports a correlation 
between light exposure and breast cancer, although the 
empirical demonstration of the melatonin link is absent 
from these studies. Women blind to light, for example, 
have a reduced risk of developing breast cancer [19, 20, 
21, 22]. One study identified a dose-response relation-
ship between visible light and breast cancer risk, with a 

progression in severity of visual impairment and thus, 
decreasing ability to perceive light, associated with a 
decreased risk of developing breast cancer in women [21]. 
In other studies, those exposed to light at night due to 
night and shiftwork showed a much higher incidence of 
breast cancer [23, 24, 25]. Another approach involved 
investigating the occurrence of breast cancer in regions 
where people are exposed to lower levels of ambient light 
due to the daytime darkness of extended winter seasons. 
As would be hypothesized, a significantly decreased prev-
alence of breast cancer was found within the Arctic popu-
lation [26]. These epidemiological studies exploring light-
cancer relationships, in conjunction with the previously 
described melatonin-cancer findings, offer enough infor-
mation to warrant further investigation of the light-mel-
atonin-cancer hypothesis. In that context, there is signifi-
cant value to examining the regulation of melatonin by 
light in humans.

In almost all species, melatonin levels are high at 
night and low during the day [4, 27]. The natural light-
dark cycle entrains neural activity via ocular input, serv-
ing to modulate the rhythmic synthesis and secretion of 
melatonin from the pineal gland. Input to this system fol-
lows the retinohypothalamic tract [RHT], a neural path-
way distinct from that of the visual system [28]. The ret-
ina detects light information, and neural impulses are 
subsequently sent to the hypothalamic suprachiasmic 
nuclei [SCN], which serve as the primary circadian 
oscillators in the regulation of daily rhythms. Although 
predominantly anatomically separate, the visual and 
circadian pathways are functionally connected with a 
projection from the intergeniculate leaflet to the SCN 
[29]. Circadian information is ultimately transmitted 
from the SCN to the pineal gland via a multisynaptic 
pathway, with connections in the hypothalamus, spinal 
cord, superior cervical ganglion and post-ganglionic sym-
pathetic fibers [28].

In addition to synchronizing the circadian melatonin 
rhythm, nighttime light exposure of the eye(s) can acutely 
disrupt activity of the pineal enzyme serotonin-N acetyl-
transferase and consequently, elicit a marked depression 
in circulating melatonin levels. The acute light-induced 
suppression of melatonin has served as a useful tool in 
studying many of the underlying mechanisms of circa-
dian physiology [3, 4, 28, 30]. Early attempts, however, 
showed an inability of light to suppress melatonin in 
humans when light levels between 100 and 800 lux were 
utilized [31, 32, 33, 34]. In 1980, Lewy et al. evoked a 
strong suppression in human melatonin when employ-
ing sixty-minute exposures to 2500 lux of white light, 
but subjects exposed to 500 lux still did not demonstrate 
this effect [35]. While 500 lux is more than adequate for 
stimulating the human daytime (photopic) visual system, 
it was not enough to significantly suppress melatonin in 
that experiment.

It could be expected that different light levels would 
be required to elicit melatonin suppression as compared 
to visual stimulation since both an anatomical and func-
tional dichotomy exist between the visual and circadian 
pathways [28, 29, 36, 37]. However, when later human 
studies controlled for factors not previously considered, 
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a suppressive response was observed with light levels as 
low as 100 lux of polychromatic white light [3, 39]. Some 
of the elements which have been shown to contribute to 
the effectiveness of photic stimuli in regulating melato-
nin include: the physical properties of the light stimulus, 
the geometrical relationship of the light stimulus to the 
eyes, consistency and direction of gaze, physical state of 
ocular tissues, pupil dilation, retinal field exposure, pho-
toreceptor sensitivity, and potential spatial and/or tem-
poral summation of light stimuli [3].

Currently, one of the best markers of the human 
circadian pacemaker is the plasma melatonin rhythm. 
Light exposure in the evening causes a phase-delay while 
light administered during late night/early morning hours 
results in a phase-advance [39]. Phase shifting by light 
exposure to the eyes, similar to acute melatonin suppres-
sion, demonstrates a characteristic intensity-dependent 
response [30, 40, 41]. Until recently, much higher levels 
of light have been required to evoke a phase shift of 
the circadian melatonin rhythm as compared to that 
needed to elicit an acute suppression of melatonin [42, 
43, 44]. While the light required for phase-resetting once 
appeared to require very bright exposures of at least 
2500 lux [46], more recent studies have found that as low 
as 100 to 180 lux of polychromatic white light can cause 
a phase shift of the human circadian clock [41, 47, 48].

When considering light-induced suppression of mela-
tonin and its potential link to cancer risk, it may appear 
somewhat reassuring that higher illuminances of light 
are necessary to produce a circadian response as com-
pared to that needed for visual stimulation. However, 
spectral characteristics of the light source further influ-
ence the amount of light needed to inhibit melatonin pro-
duction [30, 49, 50]. Figure 1 illustrates the action spec-
trum for percent control-adjusted melatonin suppression 
in 72 healthy human subjects in the study completed 
by Brainard and colleagues [30]. This particular action 
spectrum is based on a set of fluence-response curves at 
eight monochromatic wavelengths between 440 nm and 
600 nm. The fluence-response curve for any particular 
wavelength demonstrates a within-subjects comparison 
of eight subjects that each completed a series of seven 
or more nighttime melatonin suppression tests at vary-
ing irradiances. Data from each of the fluence-response 
curves was extracted, with the reciprocal of incident pho-
tons required for a half-saturation melatonin response 
plotted as a function of wavelength. The resulting spec-
tral peak sensitivity at approximately 464 nm best fits 

a vitamin A1 retinaldehyde opsin template, suggesting 
that a novel photoreceptor may be mediating circadian 
responses to light [30]. 

This study tested different monochromatic wave-
lengths of light at varying intensities and found that lev-
els lower than 0.4 to 3.3 lux of monochromatic light in 
the blue wavelength region of the visible spectrum can 
significantly suppress melatonin in healthy humans [30]. 
Although similar light exposures may be very rare in 
ordinary domestic circumstances, that finding illustrates 
the high sensitivity to light of the human RHT and mela-
tonin generating system when ocular exposure factors 
are optimized. There is also recent evidence to suggest 
that similarly low levels of white light (≤100 lux), may be 
enough to effect entrainment in humans as well [41, 51]. 
Table 1 provides the monochromatic light levels at eight 
tested visible wavelengths, each with narrow half-peak 
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Table 1.  Radiometric and photometric equivalencies of light required to elicit the half-saturation constant (ED50) of the percent-
controlled adjusted melatonin suppression in humans at eight different wavelengths [30].

 440 nm 460 nm 480 nm 505 nm 530 nm 555 nm 575 nm 600 nm

Intensity  2.42 2.41 3.43 3.28 6.75 27.7 46.6 110
(µW/cm2)
Photon density 5.35 x 1012 5.59 x 1012 8.28 x 1012 8.33 x 1012 1.801 x 1013 7.75 x 1013 1.35 x 1014 3.33 x 1014
(photons/(sec*cm2))
Photopic lux   .39 1.01 3.29 9.21 39.3 188 290 475
(lm/m2)

Scotopic lux (Im/m2) 13.5 23.3 46.2 55.2 92.4 192 132 67.9

Figure 1. This figure illustrates the action spectrum for percent 
control-adjusted melatonin suppression in humans, with the dashed 
line indicating the calculated peak spectral sensitivity at 464 nm. 
The dark circles indicate the half-saturation constants of wavelengths 
of 440, 460, 480, 505, 530, 555, 575 and 600 nm, all of which 
were normalized to the maximum response and plotted as log relative 
sensitivity. The open circle represents the estimated half-saturation 
constant derived from an incomplete set of 420 nm data, based on a 
single light exposure and a control night. The solid curve represents 
the best-fit template for vitamin A1 retinaldehyde photopigments, 
which predicts a peak spectral absorbance of 464 nm [52]. There is 
a high coefficient of correlation for fitting an opsin template to the 
melatonin suppression data (R2 = 0.91). This figure is from Brainard 
et al. [30] and is reprinted with permission (Copyright 2001 by the 
Society for Neuroscience).
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bandwidths (10–14 nm), which were required to induce 
50% melatonin suppression in humans [30]. This data 
demonstrates that much lower levels of light than ini-
tially thought can suppress high nocturnal melatonin 
levels, depending on the spectral qualities of the light 
source. In view of the possible link between light expo-
sure, melatonin suppression and cancer risk, it is impor-
tant to begin considering the consequences of nighttime 
light exposure with specific attention to the spectral char-
acteristics of the source.

When fully characterizing a given light exposure, spec-
tral qualities are an important consideration, particu-
larly when examining photobiological responses. There-
fore, direct measurement is commonly determined as a 
function of wavelength, in the form of spectral irradi-
ance or spectral photon flux density. Although these mea-
sures are comprehensive, a single numerical character-
ization of light would be more convenient for purposes 
of interpretation and comparison. In the case of describ-
ing a light source with a narrow spectral bandwidth, total 
power per unit area or total photon flux per unit area is 
an adequate way to quantify the light. However, if the 
spectral bandwidth is wide, this is not an adequate mea-
sure because photobiological responses are variable in 
their sensitivity to different wavelengths. A numerical 
characterization of the light can be obtained by weigh-
ing the spectral values by an action spectrum appropriate 
to the effect under consideration. For example, in char-
acterizing light for visual responses, there are standard 
defined spectral weighting functions for rods (night or 
scotopic vision) and cones (day or photopic vision). 

In 1980, when light induced melatonin suppression 
was first observed, there were no defined action spectra 
for circadian regulation or melatonin suppression in 
humans [35]. Consequently, photopic measures of light 
were often used as a surrogate measure in human stud-
ies of circadian and neuroendocrine physiology. In an 
effort to place the results of a recent human melatonin 
action spectra in context with previously published stud-
ies, both radiometric and photometric measures have 
been provided in Table 1. Now that action spectra for 
human melatonin suppression have been published [30, 
50], agreement upon a standard action spectrum would 
allow for a common basis for evaluation and comparison 
that would be both convenient and comprehensive in its 
consideration of spectral influences. 

Five recent action spectra developed in separate ani-
mal and human studies may be relevant to understand-
ing the potential role of light exposure in cancer develop-
ment. Across these action spectra, a common reasonably 
narrow 446–484 nm region of peak sensitivity was identi-
fied for melatonin suppression in humans [30, 50], elec-
troretinogram B-waves in humans [53], pupillary con-
striction in rd/rl mice [54], and direct retinal ganglion cell 
response to light stimuli in rats [55]. Although caution 
must be taken in interpreting these studies in relation 
to one another as they each examine distinct physiologi-
cal responses in different species, all of the action spectra 
suggest the involvement of a novel photopigment in cir-
cadian phototransduction and other non-visual, ocular-
mediated responses. 

Other studies have identified a variety of novel candi-
date photopigments including vertebrate ancient opsin 
[56], encephalopsin [57], cryptochrome [58], and mela-
nopsin [59, 60]. Among these novel opsins, melanopsin 
has been strongly implicated in circadian phototranduc-
tion. Melanopsin has been found in both the rodent and 
human retina [59, 60] and was further localized in the 
retinal ganglion cell bodies (RGCs) that project to the 
SCN [61, 62] as well as in an extensive retinal ganglion 
cell dendritic arbor [63]. In rats, ganglion cells with pro-
jections to the SCN were intrinsically responsive to light, 
and the light response mimicked that of photic entrain-
ment and melatonin suppression [55]. These same pho-
tosensitive RGCs also contain melanopsin [64]. Together, 
the aforementioned studies indicate that these melanop-
sin-positive ganglion cells may be the primary photo-
receptors involved in circadian regulation and perhaps, 
other non-visual responses in mammals.

Rapid progress is being made towards elucidating pho-
tic input for circadian regulation. As studies continue to 
clarify connections between light, melatonin and breast 
cancer risk, defining the basic related physiology becomes 
increasingly important. Visual performance, rather than 
circadian function, has traditionally been the primary 
focus of architectural lighting strategies. Failing to con-
sider the impact of light on the human circadian system 
when developing lighting standards may result in a dis-
turbance of homeostasis and in turn, a breakdown in 
physical health. Physiological consequences may not be 
limited to conditions such as sleeping disorders and win-
ter depression, but may extend to breast cancer and other 
hormone-sensitive cancers. Less than 100 lux of poly-
chromatic white light is sufficient to cause melatonin 
suppression in an acute fashion and phase shift circadian 
rhythms. That means that even common nighttime activ-
ities such as a late night out, use of the restroom during 
normal sleep times and mid-night awaking to check on a 
baby, may result in exposures to light of high enough lev-
els to disrupt normal circadian cycles. The door has been 
opened to identifying the specific relevance of this infor-
mation to cancer risk. Ultimately, it is critical to reeval-
uate the way lighting is employed for illuminating the 
indoor and outdoor environment.
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