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Abstract
The complex process of carcinogenesis is, to a large extent, due to oxidative stress. Numerous indica-

tors of oxidative damage are enhanced in the result of the action of carcinogens. Several antioxidants 
protect, with different efficacy, against oxidative abuse, exerted by carcinogens. Recently, melatonin 
(N-acetyl-5-methoxytryptamine) and some other indoleamines have gained particular meaning in the 
defense against oxidative stress and, consequently, carcinogenesis. Some antioxidants, like ascorbic acid, 
play a bivalent role in the antioxidative defense, revealing, under specific conditions, prooxidative effects. 
Among known antioxidants, melatonin is particularly frequently applied in experimental models of anti-
carcinogenic action. In the numerous studies, examining several parameters of oxidative damage and 
using several in vitro and in vivo models, this indoleamine has been shown to protect DNA and cellular 
membranes from the oxidative abuse caused by carcinogens. When either preventing or decreasing the 
oxidative damage to macromolecules, melatonin also protects against the initiation of cancer. The pro-
tection provided by melatonin and some other antioxidants against cellular damage, due to carcinogens, 
make them potential therapeutic supplements in the conditions of increased cancer risk.
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Abbreviations
ALA  δ-Aminolevulinic acid
CAT  catalase
Cd  cadmium
Cr  chromium
Cr6+  hexavalent chromium
Cr3+  trivalent chromium
E2  1,3,5[10]-Estratriene-3,17β-diol (17β-estradiol)
Fe2+  ferrous ion
Fe3+  ferric ion
Fe-NTA  ferric nitrilotriacetate
G.  guanosine radical
5HIAA  5-hydroxy-indole-3-acetic acid 
H2O2  hydrogen peroxide
IPA  indole-3-propionic acid
IR  ionizing radiation
KBrO3  potassium bromate
MDA+4-HDA  malondialdehyde + 4-hydroxyalkenals
NAS  N-acetylserotonin
NOS  nitric oxide synthase
NO.  nitric oxide
2-NP  2-nitropropane
O2–.  the superoxide anion radical
1O2  singlet oxygen
.OH  hydroxyl radical
ONOO peroxynitrite anion
8oxodGuo  8-oxo-2’-deoxyguanosine
PH3  phosphine
PHZ  phenylhydrazine
pinoline  6-methoxy-1,2,3,4-tetrahydro-β-carboline
ROS  reactive oxygen species

1. Introduction

1.1. Oxidative stress as one of the mechanisms 
of the process carcinogenesis 

There is a balance between the production and 
detoxification of reactive oxygen species (ROS) under 
physiological conditions [1, 2]. Any internal or external 
pathological factor, carcinogens included, may disrupt 
this balance, leading to conditions reffered to as oxidative 
stress; indeed, oxidative stress plays a significant role in 
the pathogenesis of cancer [3]. Oxidative stress partici-
pates in all the steps of carcinogenesis; at the first step, 
an initiation, free radical damage different molecules 
– DNA, lipids, and protein, leading directly or indirectly 
to mutations and, consequently, to cancer initiation [4]. 

The products of oxidative damage to DNA, lipid, and 
protein constitute markers of oxidative damage [5] but, 
at the same time, they may contribute per se to DNA 
damage and, in consequence, to cancer development 
[6–9]. For instance, 8-oxo-2’-deoxyguanosine (8oxodGuo), 
a product of DNA damage, is highly mutagenic [6, 7]. 
Numerous byproducts of lipid peroxidation damage DNA 
via different mechanisms [7, 8]. The oxidative damage to 
proteins may result in changes of enzyme activities and of 
some properties of membranes, like permeability, fluidity, 
signaling pathway, etc. [9].

Both endogenous and exogenous antioxidants can pre-
vent the formation of early metabolites of the damage to 
macromolecules and, in this way, protect against cancer.

1.2. Potential mechanisms of the 
anticarcinogenic action of melatonin and 
of other antioxidants

Melatonin (N-acetyl-5-methoxytryptamine) is one 
of the well documented antioxidants and free radical 
scavengers [10–16]. Much evidence has already been 
accumulated for the preventive action of melatonin 
against cancer [13, 17–22]. The anticarcinogenic action 
of melatonin is related mainly to its antioxidative and 
free radical scavenging ability.

Melatonin is widely distributed throughout the organ-
ism, being present in all cellular compartments, with its 
highest concentration in the nucleus [23]; this compart-
ment contains DNA, being directly affected by the pro-
cess of carcinogenesis. An evidence is accumulated that, 
besides the pineal gland, melatonin is produced in some 
other organs, as well (24, 25).

The primary mechanism in the defense against oxi-
dative damage relates to the ability of the molecule to 
scavenge free radicals. Melatonin and another related 
indole – indole-3-propionic acid (IPA) – have been found 
to effectively scavenge the highly toxic hydroxyl radi-
cal (.OH) with the rate constant approximately of 1010 
M–1s–1 [26, 27].

Additionally, melatonin has been shown to directly or 
indirectly detoxify the following free radicals or ROS: per-
oxynitrite anion (ONOO–), the superoxide anion radical 
(O2–.), nitric oxide (NO.), hydrogen peroxide (H2O2), sin-
glet oxygen (1O2), guanosine radical (G .) [10, 12, 13, 28].

The antioxidant enzymes can antagonize the process 
of carcinogenesis at its different stages. Melatonin is 
known to stimulate the activities od several antioxidant 
enzymes, like superoxide dismutase, γ-glutamylcysteine 
synthetase, glutathione peroxidase, glutathione reduc-
tase, glucose-6-phosphate dehydrogenase, and catalase 
(CAT); melatonin also inhibits the activity of a pro-oxi-
dative enzyme, i.e., nitric oxide synthase (NOS) [10, 12, 
13, 28].

Ascorbic acid (vitamin C) is a commonly used anti-
oxidant. It is known to provide some protection against 
tumors [29]. However, ascorbic acid may itself increase 
oxidative damage, especially in case of co-treatment with 
transition metal [30]. 

2. Oxidative damage related to potential 
carcinogens and protective effects 
of melatonin and other antioxidants 
– experimental evidence

2. 1. Iron 

Iron, as ferrous ion (Fe2+) participates in Fenton reac-
tion – the most basic reaction of oxidative stress (Fe2+ + 
H2O2 → Fe3+ + .OH + –OH). Fenton reaction, during 
which the most harmful free radical – .OH – is produced, 
may accompany all the steps of carcinogenesis [31, 32]. It 
is known that increased iron stores in the organism are 
associated with increased risks of cancer [33].

An experimental model of oxidative damage to 
membranes has been developed, using two substrates 
for Fenton reaction: Fe2+ and H2O2. In this model, two 
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products of lipid peroxidation – malondialdehyde + 
4–hydroxyalkenals (MDA+4-HDA) – are measured. In 
an in vitro study, Fe2++H2O2-related lipid peroxidation 
was prevented in homogenates of hamster testes in a con-
centration-dependent manner, by related indoles, i.e., by 
melatonin, and N-acetylserotonin (NAS), the immediate 
precursor of melatonin, and by 5-hydroxy-indole-3-ace-
tic acid (5HIAA), the main metabolite of serotonin [34]. 
In another study, we found that melatonin, vitamin E, 
vitamin C, glutathione and desferrioxamine inhibited 
Fe2++H2O2-related lipid peroxidation in liver homog-
enates in a concentration-dependent manner; addi-
tionally, melatonin revealed synergistic effects with 
other antioxidants [35]. Thus, a supplementation with 
melatonin and other indoles may prevent iron-induced 
lipid peroxidation and iron-related sperm abnormalities, 
both factors contributing to carcinogenesis [7, 8, 36].

It has recently been shown that in vivo treatment 
with melatonin protects against in vitro iron-induced 
lipid peroxidation in liver homogenates; in turn, when 
ascorbic acid was used in that model, no protective 
effect were observed [37]. Thus, an administration of 
melatonin to organisms decreases organ susceptibility 
to oxidative stress after the tissues are oxidatively chal-
lenged in vitro. 

In another experimental model, FeCl3, ADP and 
NADPH were used to induce oxidative damage to 
membranes. Ferric ion (Fe3+) indirectly participates in 
Fenton reaction, when reduced to Fe2+. The incubation 
of microsomal membranes in the presence of FeCl3, ADP 
and NADPH caused a decrease in membrane fluidity 
(the inverse of membrane rigidity), accompanied by an 
increasead amount of lipid peroxidation products; a prein-
cubation with melatonin [38,39], NAS [40], or with other 
related molecules, like 6-methoxy-1,2,3,4-tetrahydro-β-
carboline (pinoline) [41], 5-methoxytryptophol [42], and 
IPA [43] protected against those oxidative changes. It is 
worth mentioning that melatonin enhanced the protec-
tive effect of tamoxifen, an antiestrogenic drug, used in 
the treatment of breast cancer, against Fe3+ induced 
membrane oxidative damage [39].

2.2. δ-Aminolevulinic acid

δ-Aminolevulinic acid (ALA) is a precursor of haem 
synthesis and its increased concentration in blood is 
related to inherited or acquired porphyrias – acute 
intermittent porphyria (AIP), hereditary tyrosinemia 
and lead poisoning [44]. An increased incidence of can-
cer, especially in liver is observed, in patients suffering 
from porphyrias [45]. The accumulation of porphyrins 
or their precursors, followed by free radical generation 
and the release of iron from its storage sites, are assumed 
to be responsible for the higher incidence of cancer in 
porphyric patients.

ALA is used in an experimental model of porphyria-
related oxidative damage and carcinogenesis. In several 
studies, ALA has been shown to change different param-
eters of oxidative damage to macromolecules, while 
melatonin has been found to prevent those changes. 
Melatonin, when injected to rats, protected against 
the formation of 8oxodGuo in the liver, kidney, lung 

and spleen, resulting from a chronic treatment with 
ALA [46–48]. Similarly, melatonin in vivo prevented 
the decrease in membrane fluidity in hepatic and renal 
microsomes and mitochondria [46, 47] and the forma-
tion of lipid peroxidation products in hepatic microsomal 
membranes [46], in lung and spleen homogenates [48] 
and in blood serum [47], due to ALA action.

Several other studies on the protective effects of 
melatonin against ALA-induced oxidative damage have 
been published and they have recently been reviewed 
[28].

2.3. Phenylhydrazine (PHZ)

Phenylhydrazine (PHZ), belonging to the hydrazine 
family, is one of the most potent toxin used in experimen-
tal models of carcinogenesis [49]. PHZ intoxication leads, 
among others, to hepatic and spleen iron overload, free 
iron release, followed by free radical generation [50]. A 
chronic treatment with PHZ resulted in a pronounced 
increase in lipid peroxidation products in spleen and 
serum; those changes were prevented by melatonin but 
not by ascorbic acid [37]. Additionally, the pronounced 
decrease in hepatic membrane fluidity was reduced by 
melatonin, whereas a co-treatment with ascorbic acid 
even enhanced the damaging effect of PHZ, resulting in 
a further decrease in membrane fluidity [37].

2.4. Ionizing radiation (IR)

Radiation injury to living cells is, to a large extent, 
due to free radical generation [51]. Several studies have 
been performed, revealing protective effects of melatonin 
against oxidative abuse, due to ionizing radiation. Total 
body irradiation (800 cGy) of rats to IR resulted in an 
increased formation of 8oxodGuo and in a decreased 
membrane fluidity in liver; a co-treatment with melatonin 
completely prevented those oxidative changes [52]. Pre-
incubation with melatonin reduced the phenomenon of 
cell death and decreased lipid peroxidation in cultured 
human skin fibroblasts, due to exposure to IR [53]. The 
results of other studies on melatonin and its protective 
effects against IR-based oxidative damage, have recently 
been reviewed [13]. 

2.5. Chromium (Cr)

Chromium (Cr) is used in occupational settings like, 
e.g., the production of chromates, chromium plating, 
chromate pigment manufacture, and in the production 
of cement and stainless steel. The primary toxic form, to 
which organisms are exposed, is hexavalent Cr (Cr6+) 
[54]. The carcinogenic activity of Cr is thought to be the 
result of macromolecular damage caused, by reactive 
intermediates, arising in the course of its intracellular 
reduction of Cr6+ to trivalent Cr (Cr3+) and/or by Cr3+ 

itself; Cr3+ does not cross cellular membranes and accu-
mulates in cells [54].

An incubation of primary cultures of rat hepatocytes in 
the presence of Cr6+, caused DNA single-strand breaks, 
cellular toxicity, measured by the leakage of lactate 
dehydrogenase from cells, and an increased level of lipid 
peroxidation products [55]. Melatonin prevented Cr6+-
related oxidative changes and restored the levels of anti-
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oxidants – vitamins C and E, and the activity of CAT [55]. 
In another study, Cr3+ plus H2O2 induced an increase in 
8oxodGuo formation in purified calf thymus DNA and 
that effect was prevented by melatonin, applied in micro-
molar concentrations [56, 57]; other related molecules 
– IPA, pinoline, NAS and 6-hydroxymelatonin – provided 
a somewhat lower protection [56], whereas ascorbic acid 
and trolox (a water soluble form of vitamin E) were about 
60–70 times less effective [57] than melatonin in reduc-
ing DNA oxidative damage in that in vitro model. In a 
similar experimental model, the decrease in membrane 
fluidity of rat hepatic microsomal membrane, caused by 
Cr3++H2O2, was prevented by IPA [58].

2.6. Cadmium (Cd)

Cadmium (Cd), a toxic transition metal, is widely 
used in occupational settings, such as smelting, refining 
of zinc, electroplating, galvanizing, nickel-cadmium bat-
tery production, welding, and it is also present in tobacco. 
Cd-related depletion of glutathione and the induction of 
lipid peroxidation are thought to play a substantial role in 
Cd-related carcinogenesis [59]. Cadmium, when applied 
a in single injection, enhanced lipid peroxidation in dif-
ferent hamster organs – brain, heart, kidney and lung; 
those changes were prevented by a co-treatment with 
melatonin [60]. Thus, this indoleamine may be regarded 
as a potential anticarcinogenic factor which, while reduc-
ing Cd-related lipid peroxidation, may effectively protect 
against any further, more harmful damages, resulting 
from the action of the metal on live organisms. 

2.7. Bromine

Potassium bromate (KBrO3), which is used as a food 
additive, appeared to be a renal carcinogen in animal 
models [61]. Its injection to rats resulted in increased 
levels of 8oxodGuo in kidney; those increases were 
reduced after a pretreatment with melatonin, as well as 
by resveratrol and vitamin E [62].

2.8. Mercury

Mercury – a heavy metal – is not only carcinogenic 
but probably is also involved in the pathophysiological 
mechanisms of Alzheimer’s disease. Its cytotoxic effects 
in SHSY5Y neuroblastoma cells were accompanied by a 
reduction in cellular glutathione; a preincubation with 
melatonin protected cells from mercury-induced GSH 
loss [63]. 

2.9. Ferric nitrilotriacetate (Fe-NTA)

Nitrilotriacetic acid is widely used as a substitute in 
detergents for household and hospital use, manifesting 
low toxicity in experimental animals; however, the fer-
ric chelate – ferric nitrilotriacetate (Fe-NTA), has been 
reported to cause a high incidence of renal adenocarci-
noma in animal models [64]. Fe-NTA, applied in vitro, 
increased lipid peroxidation in rat kidney homogenates; 
similarly, Fe-NTA injected to animals, increased the lev-
els of MDA+4-HDA and of 8oxodGuo [65]. As expected, 
melatonin prevented the damaging effects of Fe-NTA, 
both in vitro and in vivo [65]. 

2.10. Safrole

Safrole is a constituent of several essential oils and is 
used in perfumery, denaturing fats in soap manufacture, 
and in the manufacture of heliotropin. Safrole is a com-
plete hepatocarcinogen for rats and mice [66]. 

When used in animal models, that toxin caused DNA 
damage. Safrole, applied in vivo, increased DNA adduct 
formation in rat liver; melatonin, in both pharmacologi-
cal and physiological concentrations, protected – in dose 
dependent manner – against safrole-caused DNA dam-
age [67, 68]. Safrole, injected at night, when the blood 
concentration of melatonin is physiologically higher, 
caused weaker DNA damage than when injected during 
the day; conversely, pinealectomy, which eliminates the 
night-time rise in melatonin concentration, enhanced the 
formation of DNA adducts [68]. The blood concentration 
of melatonin was inversely related to the degree of DNA 
adduct formation induced by safrole [67, 68]. Thus, 
melatonin, in physiological concentrations, prevented the 
oxidative damage of carcinogen used in pharmacological 
concentrations.

2.11. 2-Nitropropane (2-NP)

2-nitropropane (2-NP), the secondary nitroalkane, is 
widely used as an intermediate in chemical syntheses, 
in formulation of inks, paints, varnishes, adhesives and 
other coatings. It is a potent hepatocarcinogenic agent in 
rodents [69]. Additionally, leukemia and non-Hodgkin’s 
lymphoma have been described among farmers exposed 
to solvents including 2-NP [70].

Melatonin significantly reduced the level of lipid 
peroxidation in rat liver, lung, and kidney and decreased 
the activity of sorbitol dehydrogenase (related to hepatic 
damage), stimulated by an earlier single intraperitoneal 
injection of 2-NP [71].

2.12. Phosphine (PH3)

Phosphine (PH3), generated by hydrolysis of metal 
phosphides (AlP, Mg3P2), is an important dopant in 
electronic industry. Genotoxic effects of PH3 have been 
described in mice [72] and humans [73].

In animal models, PH3 increased the level of MDA+4-
HDA and decreased GSH concentration in brain, lung, 
and liver and, additionally, increased the level of 8oxod-
Guo in brain and lung; melatonin and, to a lesser degree, 
two other antioxidants – vitamin C and β-carotene, pre-
vented those changes [74].

2.13. 17β-estradiol 

1,3,5[10]-Estratriene-3,17β-diol (17β-estradiol; E2), a 
natural estrogen, is classified as a carcinogen [75, 76]. 
An animal model has been developed, relying on an 
induction of renal tumors in Syrian hamsters, due to 
chronic exposure to estrogens; this animal model shares 
numerous mechanistic features with estrogen-related 
tumors in human females, making its use appropriate 
for investigating the mechanisms of estrogen-related 
carcinogenesis [76]. There is also hamster kidney model 
of E2-induced DNA damage. E2, applied in a single injec-
tion, resulted in an increased level of 8oxodGuo in kid-
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neys (at 5 hours) and in liver (at 3 hours); those changes 
were prevented when the animals were co-treated with 
melatonin [77]. In another study, we found that not 
only melatonin, but also IPA and ascorbic acid (used in 
equimolar doses) prevented the enhanced oxidation of 
guanine bases; at the same time, however, NAS did not 
reveal any protective effect against DNA damage, due to 
E2, [78]. The protective effect of IPA against E2-induced 
DNA damage is likely related to the similarities in the 
chemical structures and the antioxidative properties of 
IPA and melatonin [27]. Concerning ascorbic acid, its 
protective action is likely related to its ability to reduce 
redox cycling between estrogens and their correspond-
ing quinone metabolites [29], which are believed to be 
responsible for the observed oxidative DNA damage 
and, consequently, for carcinogenesis. Indeed, vitamin C 
is well known to reduce the incidence of kidney tumors, 

due to chronic treatment with E2 [29]. Thus, melatonin, 
IPA and ascorbic acid can be considered as pharmacologi-
cal agents for the use in co-treatment with estrogens.

3. Concluding remarks
Melatonin effectively reduces several parameters of 

oxidative damage, due to carcinogens. It is known that 
melatonin – in physiological concentrations – contributes 
to the antioxidant capacity of human serum [79]. Thus, 
this indole, produced in the organism, participates in 
natural defense mechanisms against oxidative stress 
and cancer. Therefore, under conditions of exposure to 
carcinogens or in case of cancer, a supplementation with 
melatonin or other antioxidants should be considered. It 
is worth stressing, that high effectiveness of melatonin 
has recently been found in humans under conditions dif-
ferent from cancer [80]. 

Melatonin, oxidative damage, and cancer
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