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Abstract OBJECTIVES: To characterize the spatiotemporal brain activation patterns 
evoked by five culturally validated emotion categories—Calm, Afraid, Delighted, 
Depressed, and Excited—in an Indian sample, and to demonstrate the advantages 
of a nonparametric Bayesian general linear model (GLM) for naturalistic fMRI 
data. 
MATERIALS & METHODS: Functional MRI data were obtained from 40 healthy, 
right handed Indian adults (mean age 28.3 ± 9.14 years; 31 males, 9 females) via 
OpenNeuro (ds005700). Participants viewed 30 s film clips from the Affective 
Film Dataset from India, interleaved with white noise baselines. Data were 
preprocessed in SPM12, and regional time series were extracted from 90 cortical/
subcortical AAL ROIs using MarsBaR 0.45. We applied the NPBayes fMRI toolbox 
to fit a spatiotemporal Bayesian GLM with a hierarchical Dirichlet process prior 
for subject clustering, and spatial basis–function regularization. Posterior infer-
ence used Variational Bayes, and activation was declared via posterior probability 
of inclusion (PPI) thresholded to control a 5% Bayesian false discovery rate. 
RESULTS: All emotion conditions engaged early and higher order visual cortices. 
Calm elicited focal lingual-cuneus activation; Afraid recruited middle/inferior 
temporal regions; Delighted and Excited amplified visual responses - with Excited 
also activating parietal attention networks; Depressed combined visual engage-
ment with posterior cingulate/precuneus. The Bayesian framework revealed latent 
subject subgroups and provided threshold free, reproducible activation maps.



442 Copyright © 2025 Neuroendocrinology Letters ISSN 0172–780X • www.nel.edu

Taherian et al: Bayesian Spatiotemporal fMRI of Emotion

CONCLUSION: Nonparametric Bayesian general linear 
model analysis of culturally relevant film stimuli yields 
nuanced insights into emotion-brain dynamics, controls 
Type I error without arbitrary thresholds, and uncovers 
interindividual heterogeneity, offering a robust tool for 
affective neuroimaging. 

INTRODUCTION
Functional magnetic resonance imaging (fMRI) is 
a key tool for investigating the neural basis of emotion, 
leveraging Blood Oxygenation Level Dependent 
(BOLD) contrast to measure blood flow and oxygen-
ation changes linked to neural activity. Its high spatial 
resolution enables identification of brain regions 
like the amygdala and prefrontal cortex involved in 
emotional processing, while also capturing temporal 
dynamics (Lindquist, 2008; Poldrack et al. 2011). 
However, challenges such as inter-subject variability 
and the multiple comparisons problem complicate the 
interpretation and generalization of results (Zhang 
et al. 2015).

These issues necessitate advanced statistical 
modeling, such as random effects analyses and correc-
tions for multiple comparisons, to enhance the reli-
ability and validity of conclusions drawn from fMRI 
data (Lindquist, 2008; Poldrack et al. 2011; Zhang et al. 
2015). Classical mass-univariate general linear model 
(GLM) approaches typically analyze each voxel inde-
pendently and rely on arbitrary spatial smoothing and 
thresholding procedures, which can obscure subtle 
spatial dependencies and fail to account for between-
subject heterogeneity (Zhang et al. 2016).

Understanding when and where the brain responds 
to emotional stimuli helps reveal how emotions 
unfold in real time. Spatial patterns show which brain 
regions are active during different emotions, while 
temporal patterns capture how fast and how long these 
responses last. Together, this information improves our 
understanding of emotion and may help identify brain 
markers for mood and anxiety disorders. However, 
most emotional stimulus sets are based on Western 
samples, which limits their cultural relevance (Lim, 
2016; Lindquist et al. 2012). To address this, Mishra 
et al. (2023) developed the Affective Film Dataset from 
India (AFDI), a collection of 69 Indian and Western 
film clips rated by over 270 Indian participants (Mishra 
et al. 2023). A recent study using the NeuroEmo dataset 
employed dynamic functional connectivity and graph 
convolutional neural networks to perform supervised 
emotion classification (GCNN) (Abgeena et al. 2025). 
In contrast, the present study prioritizes statistical 
inference and spatiotemporal brain mapping, lever-
aging nonparametric Bayesian methods to quantify 
uncertainty and inter-individual heterogeneity rather 
than prediction.

In this study, we apply a recently proposed nonpara-
metric Bayesian general linear modeling framework for 

fMRI data, capable of modeling spatial and temporal 
dependencies, as well as individual heterogeneity 
within a fully probabilistic framework, to analyze 
neural responses elicited by the AFDI stimuli (Kook 
et al. 2019; Zhang et al. 2016). Our goal is to demon-
strate how this method can yield richer, more interpre-
table insights into the neural correlates of emotion in 
a culturally relevant setting.

MATERIAL AND METHODS
Dataset
Data for the present study were obtained from the 
OpenNeuro repository (https://doi.org/10.18112/
openneuro.ds005700.v1.2.0), corresponding to 
the “NeuroEmo: An fMRI Dataset for Emotion 
Recognition” collection. The dataset comprises func-
tional MRI recordings from 40 healthy, right-handed 
Indian adults (no history of neurological or psychi-
atric disorders), who each viewed a series of vali-
dated emotional film clips drawn from the AFDI. 
Participant demographic details (age range, sex distri-
bution) and inclusion/exclusion criteria are provided 
in the ds005700 metadata on OpenNeuro (Abgeena 
Abgeena, 2024; Mishra et al. 2023). This study was 
approved by the Ethics Committee of Shahid Beheshti 
University of  Medical Sciences (IR.SBMU.RETECH.
REC.1403.191).

Stimuli
Videos used in the emotion-elicitation task were drawn 
from the AFDI and comprised high-quality 30-second 
clips selected to evoke five distinct emotion classes: 
Calm, Afraid, Delighted, Depressed, and Excited. 
To provide a low-level baseline, each emotion clip was 
followed by a 30-second white-noise segment, yielding 
a fixed sequence of 20 epochs over a 10-minute run. 
Stimuli were presented using an MR-compatible 
projection system (subtending ~ 20° of visual angle) 
and delivered binaurally via noise-attenuating head-
phones. No overt behavioral responses were required 
during scanning; participants were instructed simply 
to  attend to each clip and let their emotions unfold 
naturally (Mishra et al. 2023).

Data Acquisition
All imaging was performed on a Philips Ingenia 3T 
MRI scanner at the Central Institute of Psychiatry 
(CIP), Kanke, Ranchi, using a 32-channel head coil. 
High-resolution anatomical images were acquired 
with a T1-weighted sequence (matrix = 192×192×256; 
voxel size = 1×1×1 mm³; echo time (TE) = 2.943 ms; 
repetition time (TR) = 6.5 ms; flip angle = 9°). For 
structural reference and later spatial normalization, 
Functional data were collected during two tasks: 
a  resting-state scan and an emotion-elicitation task. 
Resting-state fMRI used. The resting-state data were 
collected with a gradient-echo EPI sequence (matrix = 
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96×96×38; voxel size = 2.29×2.29×4 mm³; slice thick-
ness = 4 mm; inter-slice gap = 4 mm; TE = 35.001 ms; 
TR = 2.027 s; flip angle = 90°; 38 slices). The emotion-
elicitation runs used a similar EPI protocol optimized 
for task-based activation (matrix = 128×128×36; voxel 
size = 1.8×1.8×4 mm³; slice thickness = 4 mm; inter-
slice gap = 4 mm; TE = 35 ms; TR = 3 s; flip angle = 
90°; 36  slices). Each functional run lasted around 
10 minutes, and the emotion task followed a block 
design, where participants viewed 30-second blocks 
of emotional and white-noise video clips in a fixed 
sequence. Anatomical scans were used for subsequent 
coregistration and spatial normalization.

Preprocessing
All functional and anatomical MRI data were prepro-
cessed using SPM 25.01.02 running on MATLAB 
R2024a, with preprocessing scripts adapted to the 
dataset’s BIDS structure. The pipeline followed stan-
dard procedures as outlined in the dataset documenta-
tion. First, for each participant, functional images were 
realigned to correct for head motion using a rigid-body 
transformation. The mean functional image was then 
coregistered to the corresponding high-resolution 
anatomical T1-weighted image. Following coregistra-
tion, anatomical images were segmented into tissue 
classes (gray matter, white matter, CSF), and the trans-
formation parameters were used to normalize both 
anatomical and functional images to the MNI stan-
dard space (voxel size resampled to 2 mm isotropic for 
functional volumes). Finally, normalized functional 
images were smoothed using an 8 mm full-width at 
half-maximum (FWHM) Gaussian kernel to improve 
the signal-to-noise ratio and account for inter-subject 
anatomical variability.

To simplify network-level analysis, we extracted 
regional time series from 90 cortical and subcortical 
ROIs defined by the Automated Anatomical Labeling 
(AAL) atlas (excluding cerebellar regions), using the 
MarsBaR toolbox (version 0.45) in SPM12 following 
preprocessing. 

Model specification
In this study, we applied a spatiotemporal linear regres-
sion model to analyze task-related brain activity in 
multi-subject fMRI data (Monti, 2011; Zhang et al. 
2016). The model is expressed as

  (1)

Where yiv is the BOLD time series at vth ROI (or 
voxel) in the ith subject, Xiv is the design matrix, βiv 
denotes ROI-wise regression coefficients, and εiv repre-
sents error terms. A hierarchical Dirichlet Process 
(HDP) prior is applied to βiv to cluster subjects with 
similar brain responses and address heterogeneity; and 
also, Spatial correlations are modeled using a Markov 
Random Field (MRF) prior on selection indicators in 

a spike-and-slab distribution. Temporal correlations in 
εiv are captured by a long memory process, transformed 
via discrete wavelet transforms (DWT) to enhance 
computational efficiency (Zhang et al. 2016).

The model is extended to accommodate multiple 
stimuli using a canonical hemodynamic response func-
tion (HRF), defined as

 (2)

The design matrix Xiv is constructed by convolving 
stimulus patterns with the canonical HRF, resulting in 

 (3)

for each condition j. Posterior inference is performed 
using a variational Bayes (VB) algorithm, approxi-
mating the posterior P(βiv|yiv,Xiv). This VB approach 
offers computational efficiency over Markov chain 
Monte Carlo (MCMC) methods, making it suitable for 
large-scale fMRI datasets. This extension enhances the 
model’s flexibility for analyzing complex tasks across 
multiple stimuli and subjects (Zhang et al. 2016; Zhang 
et al. 2014).

In our ROI‐based analysis, we adopted a predefined 
Bayesian false discovery rate (FDR) of 5% and used 
it to  determine the posterior probability of inclu-
sion (PPI) threshold for declaring regions “active.” 
Specifically, we computed each AAL-90 region’s PPI, 
sorted these 90 PPIs in descending order, and selected 
the largest index v such that

 (4)

This procedure yields a PPI cutoff that guarantees the 
expected proportion of falsely declared active ROIs 
does not exceed 5%.

The analysis was conducted using the NPBayes-
fMRI toolbox, which implements the nonparametric 
Bayesian modeling framework and supports efficient 
inference and visualization of activation maps (Kook 
et al. 2019;).

RESULTS
Overview of data
The study sample consisted of 40 healthy Indian adults 
(31 males, 9 females) with a mean age of 28.3 years 
(± 9.14 years), recruited specifically to span a young-
to-middle adulthood demographic. Participants were 
all of Indian origin, reflecting the target population for 
the AFDI (Abgeena et al. 2025).
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Whole-Brain Activation Maps: Calm Condition
The ROI-wise posterior mean activation map for the 
Calm condition (Figure 1) was thresholded at a fixed 
false discovery rate (FDR) of 0.05149, corresponding 
to  a PPI ≥ 0.90437. The most prominent activation 
cluster was located in the occipital lobe, centered 
around MNI coordinates [X = 46, Y = 80, Z = 65], 
corresponding to the lingual gyrus and surrounding 
visual association cortex. This suggests sustained 
visual engagement even during low-arousal film clips. 
Additional posterior effects were observed in the infe-
rior temporal cortex and posterior fusiform gyrus, 
bilaterally, which are associated with object and scene 
recognition. These regions consistently exceeded the 
posterior significance threshold, and the 95% credible 
intervals for their estimated coefficients excluded zero. 
In contrast, medial prefrontal and limbic regions were 
largely inactive under the Calm condition, reflecting 
the absence of emotional salience or arousal in the 
presented stimuli.

Whole-Brain Activation Maps: Afraid Condition
The posterior mean activation map for the Afraid 
stimuli (Figure 2) was thresholded at a fixed FDR 
of  0.056104, corresponding to a posterior probability 
of inclusion (PPI) ≥ 0.88437. A strong bilateral activa-
tion pattern is evident, with peak activation centered at 
MNI [X = 52, Y = 81, Z = 56], located in the middle 
temporal gyrus and extending into the fusiform 
gyrus and inferior temporal cortex. These regions are 
consistently implicated in visual threat processing, 
particularly for dynamic and complex stimuli such as 
emotional film clips.

Additional clusters are observed in the superior 
temporal sulcus and posterior insula, reflecting multi-
modal sensory integration and interoceptive aware-
ness, processes frequently engaged during fearful 
experiences. While classical limbic structures like 
the amygdala and anterior cingulate cortex appear 
less prominent, the widespread posterior cortical 
engagement suggests heightened visual vigilance and 

Fig. 1. Calm film viewing predominantly activates early visual cortex in lingual gyrus and cuneus.
  ROI-wise posterior mean activation for the Calm condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI [46, 

80, 65]. 
Note: Low-arousal Calm stimuli elicit focal occipital engagement with minimal limbic activation, reflecting sustained visual attention 
without emotional salience.

Fig. 2. Threat-related stimuli engage middle and inferior temporal visual processing regions
  ROI-wise posterior mean activation for the Afraid condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI [52, 

81, 56].
Note: Fear-evoking stimuli predominantly recruit posterior visual association cortex for dynamic threat evaluation, with limited cortical 
ROI-level engagement of classical limbic structures.
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emotional scene processing. The 95% credible inter-
vals of the posterior means in the highlighted regions 
exclude zero, supporting the robustness of these fear-
evoked activations.

Whole-Brain Activation Maps: Delighted Condition
The posterior mean activation map for the Delighted 
stimuli (Figure 3) was thresholded at an FDR 
of 0.052185, corresponding to PPI ≥ 0.9032. The peak 
cluster is centered at MNI [X = 60, Y = 80, Z = 60], 
located in the right lingual gyrus and adjacent calcarine 
cortex, indicating robust engagement of early visual 
areas during positive, high-arousal film segments. 
A secondary cluster in the right fusiform gyrus suggests 
enhanced processing of complex visual features, while 
bilateral activation in the inferior temporal cortex may 
reflect object- and scene-based appraisal mechanisms. 
Unlike the Calm condition, medial prefrontal and 
limbic regions remain minimally active, implying that 
Delight in this paradigm primarily recruits enhanced 

perceptual and associative visual networks rather than 
core affective hubs. All highlighted clusters exceed the 
posterior inclusion threshold, with 95% credible inter-
vals excluding zero.

Whole-Brain Activation Maps: Depressed Condition
The posterior mean activation map for the Depressed 
stimuli (Figure 4) was thresholded at an FDR of 0.050649, 
corresponding to PPI ≥ 0.8532. The principal activation 
cluster peaks at MNI [X = 60, Y = 80, Z = 70], centered 
in the right lingual gyrus and extending dorsally into 
the posterior cingulate cortex/precuneus. This pattern 
suggests heightened engagement of visual–associative 
and self‐referential networks when viewing negatively 
valenced, low-arousal film segments. Secondary bilat-
eral clusters emerge in the inferior occipital cortex 
and posterior fusiform gyrus, indicative of enhanced 
perceptual processing of emotionally salient scenes. 
Taken together, these findings point to a combination 
of visual attention and introspective processing during 

Fig. 3. Positive high-arousal emotions amplify visual cortical responses in lingual and fusiform regions
  ROI-wise posterior mean activation for the Delighted condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI 

[60, 80, 60].
Note: Delight amplifies perceptual and associative visual networks (posterior mean ~1.6), with minimal medial prefrontal or limbic 
activation at cortical ROI resolution.

Fig. 4. Depressed mood combines visual processing with default-mode network engagement
  ROI-wise posterior mean activation for the Depressed condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI 

[60, 80, 70].
Note: Low-arousal negative emotion recruits both visual attention networks and self-referential default-mode hubs, consistent with 
introspective processing of negatively valenced content.
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Depressed stimuli, with all highlighted voxels exceeding 
the posterior inclusion threshold and their 95% credible 
intervals excluding zero.

Whole-Brain Activation Maps: Excited Condition
The posterior mean activation map for the Excited 
stimuli (Figure 5) was thresholded at an FDR 
of 0.051288, corresponding to PPI ≥ 0.7732. The stron-
gest activation cluster peaks at MNI [X = 60, Y = 60, 
Z = 50], situated in the right inferior occipital gyrus and 
extending into the adjacent fusiform gyrus and inferior 
temporal cortex. This pattern highlights the up-regu-
lation of high-level visual and object-processing areas 
during high-arousal, positively valenced film segments. 
Additional bilateral clusters in the middle temporal 
gyrus and lateral parietal cortex suggest enhanced 
attentional and multisensory integration processes 
when participants view exciting content. All supra-
threshold voxels exhibit 95% credible intervals that 
exclude zero, confirming the reliability of these arousal-
driven activations.

DISCUSSION
This study aimed to characterize how five culturally 
validated emotion categories (Calm, Afraid, Delighted, 
Depressed, Excited) engage distinct brain networks in 
an Indian sample. We applied a unified nonparametric 
Bayesian GLM via the NPBayes-fMRI toolbox—using a 
Dirichlet-process prior for subject clustering and a 5% 
Bayesian FDR on AAL-90 ROIs—to obtain robust, 
threshold-free activation maps. 

The NPBayes-fMRI model revealed that while 
the spatial topology of visual cortical engagement 
was broadly consistent across emotion categories, 
the magnitude of neural responses varied substan-
tially. However, this pattern does not support a simple 
arousal-dominance account. Peak posterior means for 
Excited (~2.5) and Delighted (~1.6) were 4-7 times 

higher than Calm (~0.35), yet Afraid (~0.3)—despite 
being classified as a high-arousal negative emotion—
showed the weakest activation among all conditions. 
This dissociation indicates that positive valence, rather 
than arousal per se, selectively amplifies cortical visual 
processing during naturalistic film viewing. The poten-
tiated responses observed for positive emotions may 
reflect enhanced perceptual fluency and approach-
motivated attention. In contrast, threat-related stimuli 
(Afraid) may preferentially engage subcortical vigilance 
and defensive networks that are not optimally captured 
by the present AAL-90 cortical ROI analysis. Calm clips 
produced focal activation in early visual areas (lingual 
gyrus, cuneus) with minimal limbic involvement. 
Depressed stimuli combined visual cortex activation 
with default-mode hubs (posterior cingulate/precu-
neus), suggesting introspective processing of negative, 
low-arousal content. Contrary to the classical nega-
tivity bias hypothesis, our data did not show stronger 
responses for threat-related stimuli. Afraid (~0.6) was 
weaker than both Delighted (~1.6) and Excited (~2.5). 
Instead, the results suggest that arousal level, regardless 
of valence, is the dominant factor driving signal ampli-
fication. This highlights the importance of considering 
arousal as the primary modulator of sensory gain in 
naturalistic emotional contexts.

While the spatial topology of activation was consis-
tent across conditions, the magnitude of the neural 
response varied by an order of magnitude. Posterior 
mean activation peaked at ~0.35-0.6 for low-arousal 
conditions (Calm, Figure 1; Afraid, Figure 2) but surged 
to ~1.6-2.5 for high-arousal conditions (Delighted, 
Figure 3; Excited, Figure 5). This large dynamic range 
in posterior mean activation suggests that emotional 
context modulates neural gain, selectively amplifying 
sensory processing under approach-related affec-
tive states. The posterior-temporal emphasis in the 
Afraid condition aligns with models positing that 
dynamic threat cues are first parsed in high-level visual 

Fig. 5. High-arousal positive emotion (excitement) produces strongest cortical visual activation and parietal engagement
  ROI-wise posterior mean activation for the Excited condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI [60, 

60, 50].
Note: High-arousal positive stimuli produce the largest magnitude cortical visual responses among all emotion categories, suggesting 
valence-dependent amplification of sensory processing.
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regions before engaging limbic circuits (de Gelder & 
Hadjikhani, 2006; Sabatinelli et al. 2007). Our obser-
vation that arousal selectively potentiates fusiform and 
parietal networks supports the view that arousal modu-
lates sensory gain and attentional orienting, whereas 
valence determines which sensory–associative routes 
are engaged (Lang & Bradley, 2010). The coupling 
of visual and default-mode areas in Depressed stimuli 
highlights how negative valence can trigger self-refer-
ential and ruminative processes even in low-arousal 
contexts (Buckner et al. 2008).

Our finding that all five emotion conditions drove 
strong responses in early and higher-order visual areas 
highlights the power of dynamic, film-based stimuli 
to  engage perceptual systems. Even in low-arousal 
states (Calm, Depressed), the lingual gyrus and cuneus 
were reliably recruited, suggesting that sustained visual 
attention is a prerequisite for any downstream affective 
processing. This aligns with work showing that natu-
ralistic scenes evoke more widespread visual activation 
than static images, effectively “priming” the brain for 
emotional appraisal (Hasson et al. 2010).

By modeling all participants and AAL-90 regions 
within a single probabilistic framework, we sidestepped 
the drawbacks of traditional two-stage analyses that 
first fit each subject separately and then combine 
results (Friston et al. 1995). Spatial basis functions and 
nonparametric priors provide principled smoothing 
and yield direct posterior‐inclusion probabilities, while 
variational Bayes makes inference scalable—and the 
NPBayes-fMRI toolbox ties it all together in a repro-
ducible workflow. (Li et al. 2015; Mejia et al. 2020).

Despite the strengths of our approach, several limita-
tions warrant consideration. First, our sample comprised 
40 healthy, right-handed Indian adults with a mean 
age of 28.3 years, which may limit the generalizability 
of findings to other age groups, clinical populations, 
or cultural contexts. Second, while the nonparametric 
Bayesian model affords flexible clustering and spatial 
regularization, it also entails substantial computational 
demands and relies on variational approximations that 
can underestimate posterior uncertainty. Third, natu-
ralistic film paradigms, by their very nature, introduce 
complex, overlapping cognitive and sensory processes 
that challenge the precise attribution of observed acti-
vations to specific emotional dimensions. Finally, the 
use of an atlas-based cortical ROI framework limits 
sensitivity to subcortical affective circuitry, which may 
partially explain the attenuated magnitude observed for 
threat-related stimuli despite their known high-arousal 
characteristics.

CONCLUSION
In this study, we applied a nonparametric Bayesian 
GLM framework to culturally validated film stimuli, 
uncovering distinct neural signatures of calm, fear, 
delight, depression, and excitement across visual and 

introspective networks. Beyond demonstrating meth-
odological advantages, our findings indicate that posi-
tive emotional valence selectively amplifies cortical 
visual processing during naturalistic viewing, whereas 
high-arousal negative stimuli do not elicit comparable 
magnitude responses at the cortical ROI level. By 
leveraging Dirichlet-process clustering and posterior 
probability thresholding, our approach revealed subtle 
inter-individual differences and avoided arbitrary statis-
tical cutoffs. These findings not only demonstrate the 
utility of advanced Bayesian methods for naturalistic 
fMRI paradigms but also underscore the importance 
of culturally relevant stimuli in affective neuroscience. 
Future work should extend this framework to larger, 
more diverse samples and integrate real-time behav-
ioral measures to further refine our understanding 
of emotion–brain dynamics.
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