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Abstract OBJECTIVES: To characterize the spatiotemporal brain activation patterns
evoked by five culturally validated emotion categories—Calm, Afraid, Delighted,
Depressed, and Excited—in an Indian sample, and to demonstrate the advantages
of a nonparametric Bayesian general linear model (GLM) for naturalistic fMRI
data.

MATERIALS & METHODS: Functional MRI data were obtained from 40 healthy,
right handed Indian adults (mean age 28.3 + 9.14 years; 31 males, 9 females) via
OpenNeuro (ds005700). Participants viewed 30 s film clips from the Affective
Film Dataset from India, interleaved with white noise baselines. Data were
preprocessed in SPM12, and regional time series were extracted from 90 cortical/
subcortical AAL ROIs using MarsBaR 0.45. We applied the NPBayes fMRI toolbox
to fit a spatiotemporal Bayesian GLM with a hierarchical Dirichlet process prior
for subject clustering, and spatial basis—function regularization. Posterior infer-
ence used Variational Bayes, and activation was declared via posterior probability
of inclusion (PPI) thresholded to control a 5% Bayesian false discovery rate.
RESULTS: All emotion conditions engaged early and higher order visual cortices.
Calm elicited focal lingual-cuneus activation; Afraid recruited middle/inferior
temporal regions; Delighted and Excited amplified visual responses - with Excited
also activating parietal attention networks; Depressed combined visual engage-
ment with posterior cingulate/precuneus. The Bayesian framework revealed latent
subject subgroups and provided threshold free, reproducible activation maps.
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CONCLUSION: Nonparametric Bayesian general linear
model analysis of culturally relevant film stimuli yields
nuanced insights into emotion-brain dynamics, controls
Type I error without arbitrary thresholds, and uncovers
interindividual heterogeneity, offering a robust tool for
affective neuroimaging.

INTRODUCTION

Functional magnetic resonance imaging (fMRI) is
a key tool for investigating the neural basis of emotion,
leveraging Blood Oxygenation Level Dependent
(BOLD) contrast to measure blood flow and oxygen-
ation changes linked to neural activity. Its high spatial
resolution enables identification of brain regions
like the amygdala and prefrontal cortex involved in
emotional processing, while also capturing temporal
dynamics (Lindquist, 2008; Poldrack et al. 2011).
However, challenges such as inter-subject variability
and the multiple comparisons problem complicate the
interpretation and generalization of results (Zhang
et al. 2015).

These issues necessitate advanced statistical
modeling, such as random effects analyses and correc-
tions for multiple comparisons, to enhance the reli-
ability and validity of conclusions drawn from fMRI
data (Lindquist, 2008; Poldrack et al. 2011; Zhang et al.
2015). Classical mass-univariate general linear model
(GLM) approaches typically analyze each voxel inde-
pendently and rely on arbitrary spatial smoothing and
thresholding procedures, which can obscure subtle
spatial dependencies and fail to account for between-
subject heterogeneity (Zhang et al. 2016).

Understanding when and where the brain responds
to emotional stimuli helps reveal how emotions
unfold in real time. Spatial patterns show which brain
regions are active during different emotions, while
temporal patterns capture how fast and how long these
responses last. Together, this information improves our
understanding of emotion and may help identify brain
markers for mood and anxiety disorders. However,
most emotional stimulus sets are based on Western
samples, which limits their cultural relevance (Lim,
2016; Lindquist et al. 2012). To address this, Mishra
et al. (2023) developed the Affective Film Dataset from
India (AFDI), a collection of 69 Indian and Western
film clips rated by over 270 Indian participants (Mishra
et al. 2023). A recent study using the NeuroEmo dataset
employed dynamic functional connectivity and graph
convolutional neural networks to perform supervised
emotion classification (GCNN) (Abgeena et al. 2025).
In contrast, the present study prioritizes statistical
inference and spatiotemporal brain mapping, lever-
aging nonparametric Bayesian methods to quantify
uncertainty and inter-individual heterogeneity rather
than prediction.

In this study, we apply a recently proposed nonpara-
metric Bayesian general linear modeling framework for

fMRI data, capable of modeling spatial and temporal
dependencies, as well as individual heterogeneity
within a fully probabilistic framework, to analyze
neural responses elicited by the AFDI stimuli (Kook
et al. 2019; Zhang et al. 2016). Our goal is to demon-
strate how this method can yield richer, more interpre-
table insights into the neural correlates of emotion in
a culturally relevant setting.

MATERIAL AND METHODS

Dataset

Data for the present study were obtained from the
OpenNeuro  repository  (https://doi.org/10.18112/
openneuro.ds005700.v1.2.0), corresponding to
the “NeuroEmo: An fMRI Dataset for Emotion
Recognition” collection. The dataset comprises func-
tional MRI recordings from 40 healthy, right-handed
Indian adults (no history of neurological or psychi-
atric disorders), who each viewed a series of vali-
dated emotional film clips drawn from the AFDL
Participant demographic details (age range, sex distri-
bution) and inclusion/exclusion criteria are provided
in the ds005700 metadata on OpenNeuro (Abgeena
Abgeena, 2024; Mishra et al. 2023). This study was
approved by the Ethics Committee of Shahid Beheshti
University of Medical Sciences (IR.SBMU.RETECH.
REC.1403.191).

Stimuli

Videos used in the emotion-elicitation task were drawn
from the AFDI and comprised high-quality 30-second
clips selected to evoke five distinct emotion classes:
Calm, Afraid, Delighted, Depressed, and Excited.
To provide a low-level baseline, each emotion clip was
followed by a 30-second white-noise segment, yielding
a fixed sequence of 20 epochs over a 10-minute run.
Stimuli were presented using an MR-compatible
projection system (subtending ~ 20° of visual angle)
and delivered binaurally via noise-attenuating head-
phones. No overt behavioral responses were required
during scanning; participants were instructed simply
to attend to each clip and let their emotions unfold
naturally (Mishra et al. 2023).

Data Acquisition

All imaging was performed on a Philips Ingenia 3T
MRI scanner at the Central Institute of Psychiatry
(CIP), Kanke, Ranchi, using a 32-channel head coil.
High-resolution anatomical images were acquired
with a T1-weighted sequence (matrix = 192x192x256;
voxel size = 1x1x1 mm?; echo time (TE) = 2.943 ms;
repetition time (TR) = 6.5 ms; flip angle = 9°). For
structural reference and later spatial normalization,
Functional data were collected during two tasks:
a resting-state scan and an emotion-elicitation task.
Resting-state fMRI used. The resting-state data were
collected with a gradient-echo EPI sequence (matrix =
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96x96x38; voxel size = 2.29x2.29x4 mm?; slice thick-
ness = 4 mm; inter-slice gap = 4 mm; TE = 35.001 ms;
TR = 2.027 s; flip angle = 90°; 38 slices). The emotion-
elicitation runs used a similar EPI protocol optimized
for task-based activation (matrix = 128x128x36; voxel
size = 1.8x1.8x4 mm?; slice thickness = 4 mm; inter-
slice gap = 4 mm; TE = 35 ms; TR = 3 s; flip angle =
90° 36 slices). Each functional run lasted around
10 minutes, and the emotion task followed a block
design, where participants viewed 30-second blocks
of emotional and white-noise video clips in a fixed
sequence. Anatomical scans were used for subsequent
coregistration and spatial normalization.

Preprocessing

All functional and anatomical MRI data were prepro-
cessed using SPM 25.01.02 running on MATLAB
R2024a, with preprocessing scripts adapted to the
dataset’s BIDS structure. The pipeline followed stan-
dard procedures as outlined in the dataset documenta-
tion. First, for each participant, functional images were
realigned to correct for head motion using a rigid-body
transformation. The mean functional image was then
coregistered to the corresponding high-resolution
anatomical T1-weighted image. Following coregistra-
tion, anatomical images were segmented into tissue
classes (gray matter, white matter, CSF), and the trans-
formation parameters were used to normalize both
anatomical and functional images to the MNI stan-
dard space (voxel size resampled to 2 mm isotropic for
functional volumes). Finally, normalized functional
images were smoothed using an 8 mm full-width at
half-maximum (FWHM) Gaussian kernel to improve
the signal-to-noise ratio and account for inter-subject
anatomical variability.

To simplify network-level analysis, we extracted
regional time series from 90 cortical and subcortical
ROIs defined by the Automated Anatomical Labeling
(AAL) atlas (excluding cerebellar regions), using the
MarsBaR toolbox (version 0.45) in SPM12 following
preprocessing.

Model specification

In this study, we applied a spatiotemporal linear regres-
sion model to analyze task-related brain activity in
multi-subject fMRI data (Monti, 2011; Zhang et al.
2016). The model is expressed as

Yo = XivPBiv + €iv) (1)

Where y;, is the BOLD time series at vth ROI (or
voxel) in the ith subject, X;, is the design matrix, f3;,
denotes ROI-wise regression coefficients, and ¢;, repre-
sents error terms. A hierarchical Dirichlet Process
(HDP) prior is applied to f3;, to cluster subjects with
similar brain responses and address heterogeneity; and
also, Spatial correlations are modeled using a Markov
Random Field (MRF) prior on selection indicators in
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a spike-and-slab distribution. Temporal correlations in
g, are captured by a long memory process, transformed
via discrete wavelet transforms (DWT) to enhance
computational efficiency (Zhang et al. 2016).

The model is extended to accommodate multiple
stimuli using a canonical hemodynamic response func-
tion (HRF), defined as

t“l_lﬂfl taz—lﬁzaz 2)
o= Ay — .
Aiwj YT (ay) I'(ay)

The design matrix X;, is constructed by convolving
stimulus patterns with the canonical HRE resulting in

t

Xipj(t) = f Xj (S)hAiw. (t — s)ds, (3)
0

for each condition j. Posterior inference is performed
using a variational Bayes (VB) algorithm, approxi-
mating the posterior P(f; |y;,X;,). This VB approach
offers computational efficiency over Markov chain
Monte Carlo (MCMC) methods, making it suitable for
large-scale fMRI datasets. This extension enhances the
model’s flexibility for analyzing complex tasks across
multiple stimuli and subjects (Zhang et al. 2016; Zhang
et al. 2014).

In our ROI-based analysis, we adopted a predefined
Bayesian false discovery rate (FDR) of 5% and used
it to determine the posterior probability of inclu-
sion (PPI) threshold for declaring regions “active
Specifically, we computed each AAL-90 regions PPI,
sorted these 90 PPIs in descending order, and selected
the largest index v such that

321(1 - PPIin)I(PPIL'Vj>kU)

290 I
v=11(PPIljy>k;)

This procedure yields a PPI cutoff that guarantees the
expected proportion of falsely declared active ROIs
does not exceed 5%.

The analysis was conducted using the NPBayes-
fMRI toolbox, which implements the nonparametric
Bayesian modeling framework and supports efficient
inference and visualization of activation maps (Kook
et al. 2019;).

RESULTS

Overview of data

The study sample consisted of 40 healthy Indian adults
(31 males, 9 females) with a mean age of 28.3 years
(£ 9.14 years), recruited specifically to span a young-
to-middle adulthood demographic. Participants were
all of Indian origin, reflecting the target population for
the AFDI (Abgeena et al. 2025).
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Fig. 1. Calm film viewing predominantly activates early visual cortex in lingual gyrus and cuneus.
ROI-wise posterior mean activation for the Calm condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI [46,

80, 65].

Note: Low-arousal Calm stimuli elicit focal occipital engagement with minimal limbic activation, reflecting sustained visual attention

without emotional salience.

Whole-Brain Activation Maps: Calm Condition

The ROI-wise posterior mean activation map for the
Calm condition (Figure 1) was thresholded at a fixed
false discovery rate (FDR) of 0.05149, corresponding
to a PPI > 0.90437. The most prominent activation
cluster was located in the occipital lobe, centered
around MNI coordinates [X = 46, Y = 80, Z = 65],
corresponding to the lingual gyrus and surrounding
visual association cortex. This suggests sustained
visual engagement even during low-arousal film clips.
Additional posterior effects were observed in the infe-
rior temporal cortex and posterior fusiform gyrus,
bilaterally, which are associated with object and scene
recognition. These regions consistently exceeded the
posterior significance threshold, and the 95% credible
intervals for their estimated coefficients excluded zero.
In contrast, medial prefrontal and limbic regions were
largely inactive under the Calm condition, reflecting
the absence of emotional salience or arousal in the
presented stimuli.

Whole-Brain Activation Maps: Afraid Condition

The posterior mean activation map for the Afraid
stimuli (Figure 2) was thresholded at a fixed FDR
of 0.056104, corresponding to a posterior probability
of inclusion (PPI) > 0.88437. A strong bilateral activa-
tion pattern is evident, with peak activation centered at
MNI [X =52,Y = 81, Z = 56], located in the middle
temporal gyrus and extending into the fusiform
gyrus and inferior temporal cortex. These regions are
consistently implicated in visual threat processing,
particularly for dynamic and complex stimuli such as
emotional film clips.

Additional clusters are observed in the superior
temporal sulcus and posterior insula, reflecting multi-
modal sensory integration and interoceptive aware-
ness, processes frequently engaged during fearful
experiences. While classical limbic structures like
the amygdala and anterior cingulate cortex appear
less prominent, the widespread posterior cortical
engagement suggests heightened visual vigilance and

Fig. 2. Threat-related stimuli engage middle and inferior temporal visual processing regions
ROI-wise posterior mean activation for the Afraid condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI [52,

81, 56].

Note: Fear-evoking stimuli predominantly recruit posterior visual association cortex for dynamic threat evaluation, with limited cortical

ROI-level engagement of classical limbic structures.
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Fig. 3. Positive high-arousal emotions amplify visual cortical responses in lingual and fusiform regions
ROI-wise posterior mean activation for the Delighted condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI

[60, 80, 60].

Note: Delight amplifies perceptual and associative visual networks (posterior mean ~1.6), with minimal medial prefrontal or limbic

activation at cortical ROl resolution.

emotional scene processing. The 95% credible inter-
vals of the posterior means in the highlighted regions
exclude zero, supporting the robustness of these fear-
evoked activations.

Whole-Brain Activation Maps: Delighted Condition

The posterior mean activation map for the Delighted
stimuli (Figure 3) was thresholded at an FDR
of 0.052185, corresponding to PPI > 0.9032. The peak
cluster is centered at MNI [X = 60, Y = 80, Z = 60],
located in the right lingual gyrus and adjacent calcarine
cortex, indicating robust engagement of early visual
areas during positive, high-arousal film segments.
A secondary cluster in the right fusiform gyrus suggests
enhanced processing of complex visual features, while
bilateral activation in the inferior temporal cortex may
reflect object- and scene-based appraisal mechanisms.
Unlike the Calm condition, medial prefrontal and
limbic regions remain minimally active, implying that
Delight in this paradigm primarily recruits enhanced

perceptual and associative visual networks rather than
core affective hubs. All highlighted clusters exceed the
posterior inclusion threshold, with 95% credible inter-
vals excluding zero.

Whole-Brain Activation Maps: Depressed Condition

The posterior mean activation map for the Depressed
stimuli (Figure 4) was thresholded at an FDR 0f 0.050649,
corresponding to PPI > 0.8532. The principal activation
cluster peaks at MNI [X = 60, Y = 80, Z = 70], centered
in the right lingual gyrus and extending dorsally into
the posterior cingulate cortex/precuneus. This pattern
suggests heightened engagement of visual-associative
and self-referential networks when viewing negatively
valenced, low-arousal film segments. Secondary bilat-
eral clusters emerge in the inferior occipital cortex
and posterior fusiform gyrus, indicative of enhanced
perceptual processing of emotionally salient scenes.
Taken together, these findings point to a combination
of visual attention and introspective processing during

Fig. 4. Depressed mood combines visual processing with default-mode network engagement
ROI-wise posterior mean activation for the Depressed condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI

[60, 80, 70].

Note: Low-arousal negative emotion recruits both visual attention networks and self-referential default-mode hubs, consistent with

introspective processing of negatively valenced content.
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Fig. 5. High-arousal positive emotion (excitement) produces strongest cortical visual activation and parietal engagement
ROI-wise posterior mean activation for the Excited condition, shown on sagittal (left), coronal (center), and axial (right) slices at MNI [60,

60, 50].

Note: High-arousal positive stimuli produce the largest magnitude cortical visual responses among all emotion categories, suggesting

valence-dependent amplification of sensory processing.

Depressed stimuli, with all highlighted voxels exceeding
the posterior inclusion threshold and their 95% credible
intervals excluding zero.

Whole-Brain Activation Maps: Excited Condition

The posterior mean activation map for the Excited
stimuli (Figure 5) was thresholded at an FDR
0f 0.051288, corresponding to PPI > 0.7732. The stron-
gest activation cluster peaks at MNI [X = 60, Y = 60,
Z = 50], situated in the right inferior occipital gyrus and
extending into the adjacent fusiform gyrus and inferior
temporal cortex. This pattern highlights the up-regu-
lation of high-level visual and object-processing areas
during high-arousal, positively valenced film segments.
Additional bilateral clusters in the middle temporal
gyrus and lateral parietal cortex suggest enhanced
attentional and multisensory integration processes
when participants view exciting content. All supra-
threshold voxels exhibit 95% credible intervals that
exclude zero, confirming the reliability of these arousal-
driven activations.

DISCUSSION

This study aimed to characterize how five culturally
validated emotion categories (Calm, Afraid, Delighted,
Depressed, Excited) engage distinct brain networks in
an Indian sample. We applied a unified nonparametric
Bayesian GLM via the NPBayes-fMRI toolbox—using a
Dirichlet-process prior for subject clustering and a 5%
Bayesian FDR on AAL-90 ROIs—to obtain robust,
threshold-free activation maps.

The NPBayes-fMRI model revealed that while
the spatial topology of visual cortical engagement
was broadly consistent across emotion categories,
the magnitude of neural responses varied substan-
tially. However, this pattern does not support a simple
arousal-dominance account. Peak posterior means for
Excited (~2.5) and Delighted (~1.6) were 4-7 times

higher than Calm (~0.35), yet Afraid (~0.3)—despite
being classified as a high-arousal negative emotion—
showed the weakest activation among all conditions.
This dissociation indicates that positive valence, rather
than arousal per se, selectively amplifies cortical visual
processing during naturalistic film viewing. The poten-
tiated responses observed for positive emotions may
reflect enhanced perceptual fluency and approach-
motivated attention. In contrast, threat-related stimuli
(Afraid) may preferentially engage subcortical vigilance
and defensive networks that are not optimally captured
by the present AAL-90 cortical ROI analysis. Calm clips
produced focal activation in early visual areas (lingual
gyrus, cuneus) with minimal limbic involvement.
Depressed stimuli combined visual cortex activation
with default-mode hubs (posterior cingulate/precu-
neus), suggesting introspective processing of negative,
low-arousal content. Contrary to the classical nega-
tivity bias hypothesis, our data did not show stronger
responses for threat-related stimuli. Afraid (~0.6) was
weaker than both Delighted (~1.6) and Excited (~2.5).
Instead, the results suggest that arousal level, regardless
of valence, is the dominant factor driving signal ampli-
fication. This highlights the importance of considering
arousal as the primary modulator of sensory gain in
naturalistic emotional contexts.

While the spatial topology of activation was consis-
tent across conditions, the magnitude of the neural
response varied by an order of magnitude. Posterior
mean activation peaked at ~0.35-0.6 for low-arousal
conditions (Calm, Figure 1; Afraid, Figure 2) but surged
to ~1.6-2.5 for high-arousal conditions (Delighted,
Figure 3; Excited, Figure 5). This large dynamic range
in posterior mean activation suggests that emotional
context modulates neural gain, selectively amplifying
sensory processing under approach-related affec-
tive states. The posterior-temporal emphasis in the
Afraid condition aligns with models positing that
dynamic threat cues are first parsed in high-level visual
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regions before engaging limbic circuits (de Gelder &
Hadjikhani, 2006; Sabatinelli et al. 2007). Our obser-
vation that arousal selectively potentiates fusiform and
parietal networks supports the view that arousal modu-
lates sensory gain and attentional orienting, whereas
valence determines which sensory-associative routes
are engaged (Lang & Bradley, 2010). The coupling
of visual and default-mode areas in Depressed stimuli
highlights how negative valence can trigger self-refer-
ential and ruminative processes even in low-arousal
contexts (Buckner et al. 2008).

Our finding that all five emotion conditions drove
strong responses in early and higher-order visual areas
highlights the power of dynamic, film-based stimuli
to engage perceptual systems. Even in low-arousal
states (Calm, Depressed), the lingual gyrus and cuneus
were reliably recruited, suggesting that sustained visual
attention is a prerequisite for any downstream affective
processing. This aligns with work showing that natu-
ralistic scenes evoke more widespread visual activation
than static images, effectively “priming” the brain for
emotional appraisal (Hasson et al. 2010).

By modeling all participants and AAL-90 regions
within a single probabilistic framework, we sidestepped
the drawbacks of traditional two-stage analyses that
first fit each subject separately and then combine
results (Friston et al. 1995). Spatial basis functions and
nonparametric priors provide principled smoothing
and yield direct posterior-inclusion probabilities, while
variational Bayes makes inference scalable—and the
NPBayes-fMRI toolbox ties it all together in a repro-
ducible workflow. (Li et al. 2015; Mejia et al. 2020).

Despite the strengths of our approach, several limita-
tions warrant consideration. First, our sample comprised
40 healthy, right-handed Indian adults with a mean
age of 28.3 years, which may limit the generalizability
of findings to other age groups, clinical populations,
or cultural contexts. Second, while the nonparametric
Bayesian model affords flexible clustering and spatial
regularization, it also entails substantial computational
demands and relies on variational approximations that
can underestimate posterior uncertainty. Third, natu-
ralistic film paradigms, by their very nature, introduce
complex, overlapping cognitive and sensory processes
that challenge the precise attribution of observed acti-
vations to specific emotional dimensions. Finally, the
use of an atlas-based cortical ROI framework limits
sensitivity to subcortical affective circuitry, which may
partially explain the attenuated magnitude observed for
threat-related stimuli despite their known high-arousal
characteristics.

CONCLUSION

In this study, we applied a nonparametric Bayesian
GLM framework to culturally validated film stimuli,
uncovering distinct neural signatures of calm, fear,
delight, depression, and excitement across visual and
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introspective networks. Beyond demonstrating meth-
odological advantages, our findings indicate that posi-
tive emotional valence selectively amplifies cortical
visual processing during naturalistic viewing, whereas
high-arousal negative stimuli do not elicit comparable
magnitude responses at the cortical ROI level. By
leveraging Dirichlet-process clustering and posterior
probability thresholding, our approach revealed subtle
inter-individual differences and avoided arbitrary statis-
tical cutoffs. These findings not only demonstrate the
utility of advanced Bayesian methods for naturalistic
fMRI paradigms but also underscore the importance
of culturally relevant stimuli in affective neuroscience.
Future work should extend this framework to larger,
more diverse samples and integrate real-time behav-
ioral measures to further refine our understanding
of emotion-brain dynamics.
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