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Abstract BACKGROUND: Fibrosis is a pan-organ wound-healing program, yet stromal 
mechanisms that are liver-selective and connect liver fibrosis to hepatocellular 
carcinoma (HCC) remain incompletely defined. 
METHODS: We assembled public single-cell RNA-seq datasets from fibrotic heart, 
kidney, liver, and lung with matched controls and applied a unified Seurat integra-
tion workflow, differential expression and pathway enrichment, Slingshot pseudo-
time, and CellChat ligand–receptor inference. We used cross-organ subtraction 
of shared pan-fibrotic signatures to nominate liver-enriched fibroblast (FB) genes 
and pathways, intersected these candidates with HCC single-cell datasets and FB 
trajectories to prioritize fibrosis-aligned, tumor-progression genes, and compared 
intercellular communication across organs focusing on hepatocyte–FB pairs. 
RESULTS: Integration recovered robust FB clusters in each organ without domi-
nant batch effects, supported by canonical FB markers (PDGFRA, LAMB1). Liver 
FB programs showed endocrine–metabolic rewiring (e.g., insulin/glucagon/
FOXO signaling) alongside suppression of xenobiotic/GPCR modules. In HCC, FB 
subclustering resolved healthy and pathogenic FB states, and Slingshot captured 
a  continuous healthy-to-pathogenic activation axis. Differential expression 
identified 126 liver-specific upregulated and 239 downregulated DEGs; overlap 
with HCC pseudotime highlighted SULF2/TIMP3 (fibrosis , progression ) and 
TNFAIP8 (fibrosis , progression ). Cross-organ CellChat comparisons further 
prioritized HGF–MET and AGT–AGTR1B as liver-selective axes relative to heart, 
kidney, and lung, with stellate-to-hepatocyte (HGF–MET) and hepatocyte-to-
stellate (AGT–AGTR1B) ligand–receptor expression correlations observed in liver 
fibrosis and replicated in independent HCC datasets.
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CONCLUSIONS: Cross-organ single-cell integration 
prioritizes liver-selective stromal circuitry and nomi-
nates hepatocyte–FB axes (HGF–MET, AGT–AGTR1B) 
as plausible links between fibrogenic remodeling and 
a pro-tumorigenic niche, yielding testable hypotheses 
at the interface of regeneration, RAS biology, and tumor 
initiation.

INTRODUCTION
Fibrosis is a maladaptive wound-healing program that 
culminates in cirrhosis and is tightly linked to hepa-
tocellular carcinoma (HCC). In the liver, quiescent 
vitamin-A–storing hepatic stellate cells (HSCs) trans-
differentiate into proliferative, contractile, collagen-
producing myofibroblasts that synthesize extracellular 
matrix (ECM) and remodel the microenvironment; 
HSC activation is a central driver of human and exper-
imental liver fibrosis (Tsuchida & Friedman, 2017; 
Higashi et al. 2017; Kamm & McCommis, 2022).

Single-cell transcriptomics has resolved the 
cellular architecture of cirrhotic livers, identifying 
scar-associated macrophages and endothelial cells 
together with PDGFRα+ collagen-producing mesen-
chyme that engage pro-fibrogenic signaling circuits 
and nominate actionable targets within the fibrotic 
niche (Ramachandran et al. 2019, Payen et al. 2021). 
Clinically, within the MAFLD/MASLD spectrum, 
metabolic dysfunction–associated steatohepatitis 
(MASH) confers elevated HCC risk, and across cohorts 
fibrosis stage consistently emerges as the dominant 
predictor of liver-related outcomes and malignant 
transformation—motivating cross-organ single-cell 
integration to subtract shared inflammation–ECM–
mechanotransduction signatures and isolate liver-
specific fibroblast (FB/HSC) programs with oncologic 
relevance (Ekstedt et al. 2015; Dulai et al. 2017; Ng 
et  al. 2023; Phoolchund et al. 2024; Ghazanfar et al. 
2024).

Building on these advances, this study integrated 
single-cell datasets from fibrotic heart, liver, kidney, 
and lung, subtracted pan-organ injury programs, and 
isolated liver-specific FB differentially expressed genes 

and pathways that overlap with HCC cohorts. We then 
quantified intercellular communication using CellChat 
to identify hepatocyte–FB axes selectively reinforced 
in liver fibrosis, thereby linking liver-specific stromal 
remodeling to a pro-tumorigenic niche.

MATERIALS AND METHOD
Dataset Collection
Here, we collected nine public single-cell RNA 
sequencing datasets comprising liver, heart, kidney, 
and lung fibrosis samples. Each organ dataset included 
both fibrosis cases and healthy controls. Details for 
each dataset including organ, GEO accession, number 
of cells, and sample counts are provided in Table 1.

Analysis of single cell RNA sequencing data
The Seurat V4 data integration pipeline was used 
to batch correct the data through the canonical correla-
tion analysis (CCA) method. According to a benchmark 
comparison study conducted by Tran and colleagues 
(Tran et al. 2020), Seurat CCA was identified as one 
of the top three preferred batch integration techniques 
for this type of data. The R package SCTransform 
(Hafemeister & Satija, 2019) was used to normalize 
gene expression for each cell by fitting the Gamma-
Poisson generalized linear model. The resulting log-
transformed, normalized single-cell expression values 
were used for visualizations and differential expres-
sion tests. Statistically significant principal compo-
nents were determined by a resampling test and were 
retained for the Uniform Manifold Approximation 
and Projection (UMAP) analysis. Differential expres-
sion analysis among clusters was conducted using 
a likelihood-ratio test, comparing cells within each 
cluster against all other cells. Gene A was defined as 
a biomarker for cluster X if it was detected in at least 
25% of cells, had an adjusted p-value less than 0.05, and 
had a log e fold change of at least 0.25 between cells 
of cluster X and all other cells. These analyses were 
performed using the Seurat package v4.0. DEGs were 
analyzed for GO terms and KEGG pathways enrich-
ment by using KOBAS (Bu et al. 2021). A significance 

Tab. 1. Information of Datasets included

Organ GEO ID Number of cells Number of Samples

Heart GSE183852 269,794 DCM = 19, Control = 36

Kidney GSE195460
GSE211785 202,798 DKD = 13, Control = 28

Lung GSE135893 79,320 IPF = 12, Control = 10

Liver GSE202379 54,202 NAFLD End Stage = 5, NASH with cirrhosis = 4, 
NAFLD = 7, Control = 4

Liver

GSE124395
GSE136103
GSE98638

GSE125449

39,470 HCC = 3, NASH = 9, Control = 7
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Fig. 1. Integration of public datasets and identification of fibroblast (FB) populations.
  (A) Overview of the analytical workflow. (B–E) Distribution of major cell types, disease status, and expression patterns of PDGFRA and 

LAMB1 across organs. Upper left: Liver; Upper right: Kidney; Lower left: Lung; Lower right: Heart.

(A)

(B) (C)

(D) (E)

A)
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threshold of FDR < 0.05 was used during the enrich-
ment analysis to identify significant results.

Trajectory analysis of pseudotime
Trajectory analysis was performed using the Slingshot 
algorithm (Street et al. 2018) to infer fibroblast lineage 
progression based on single-cell transcriptomic 
data. After normalization and dimensionality reduc-
tion, fibroblast clusters were extracted and supplied 
to  Slingshot (v2.6.0) with the UMAP embedding as 
the input space. Slingshot was used to fit simultaneous 
principal curves describing smooth trajectories toward 
activated or pathogenic fibroblast states. The inferred 
pseudotime values for each cell were extracted from 
the SlingshotDataSet object for downstream analyses.

Cell-Cell interaction analysis
Cell–cell communication analysis was performed 
using the CellChat R package (Jin et al. 2021) to infer 
and compare intercellular signaling networks between 
fibrotic and control samples. For each organ-specific 
dataset (heart, liver, kidney, and lung), we constructed 
a CellChat object using normalized single-cell expres-
sion matrices after Seurat integration and cell-type 
annotation. The analysis was restricted to  genes 
encoding known ligands, receptors, and their 
cofactors as curated in the CellChatDB database. 
Communication probabilities were computed using 
a mass action model, followed by statistical inference 
of significant ligand–receptor interactions (p < 0.05). 
Each interaction was assigned to one of several major 
signaling pathways according to CellChat’s functional 
grouping.

RESULTS
Integration of public datasets and identification 
of FB cells
In our cross‐organ analysis, we assembled single-cell 
RNA-seq datasets from fibrotic heart, kidney, liver, and 
lung and implemented a unified preprocessing/normal-
ization workflow to nominate liver-specific stromal 
programs. After subtracting pan-fibrotic signatures, 
we identified differentially expressed genes and path-
ways selectively enriched in liver fibroblasts (FBs) and 
overlaid these with trajectory results from independent 
hepatocellular carcinoma (HCC) cohorts to  pinpoint 
FB-linked genes that increase along tumor progression, 
together with liver-enriched ligand–receptor signals 
characteristic of fibrosis (Fig. 1A). For each organ, 
UMAP embeddings and graph-based clustering consis-
tently resolved a discrete FB cluster (Fig. 1B). Sample-
wise coloring of the same embeddings demonstrated 
adequate cross-sample mixing with no dominant 
batch-driven aggregates, indicating minimal residual 
batch effects after integration (Fig.  1C). Marker vali-
dation further supported the fidelity of FB calling: 
PDGFRA showed strong, cluster-restricted expression, 

while the basement-membrane component LAMB1 
mapped concordantly to the same stromal compart-
ment, both clearly segregated from epithelial, endothe-
lial, and immune populations (Fig. 1D–E). Collectively, 
these results establish a robust cross-organ framework 
that isolates liver-specific FB signatures.

Liver-specific fibroblast programs feature endocrine–
metabolic rewiring and xenobiotic/GPCR suppression
We systematically compared differentially expressed 
genes (DEGs) that were upregulated or downregulated 
in fibrotic fibroblasts (FBs) across heart, kidney, liver, 
and lung (Fig. 2A). Pathway-level enrichment analysis 
revealed organ-restricted fibroblast (FB) programs. 
Using a unified threshold (FDR < 0.05), we identified 
pathways that were selectively upregulated or down-
regulated in individual organs (Fig. 2B–C). To quan-
tify organ specificity at the gene level, we intersected 
FB DEGs across all fibrotic datasets and nominated 
liver-selective signatures, yielding 126 liver-specific 
upregulated genes and 239 liver-specific downregu-
lated genes (Venn diagrams; Fig. 2D–E); complete 
gene lists are provided in Table S1. Enrichment analysis 
of the liver-specific upregulated set was dominated by 
Glucagon signaling, Insulin signaling, and FOXO-
mediated transcription (FDR < 0.05; Fig. 2B), consis-
tent with a liver-centric endocrine–metabolic rewiring 
of the stromal compartment in fibrosis. In contrast, 
liver-specific downregulated pathways included 
Phase I—Functionalization of Compounds (xeno-
biotic/drug metabolism) and G alpha (i) signaling 
events (FDR  <  0.05; Fig. 2C), indicating attenuation 
of xenobiotic biotransformation modules and reduced 
Gi-coupled GPCR inhibitory signaling in fibrotic 
liver FBs. Notably, under identical selection criteria, 
the liver FB signatures showed no overlap with the 
corresponding heart/kidney/lung FB signatures (Fig. 
2D–E), supporting their organ-restricted nature. 
Representative liver-specific FB markers are illustrated 
in Fig. 2G–I, where ADAMTS13 and NR1H4 (FXR) 
displayed fibrosis-associated decreases, whereas 
RAPGEF5 exhibited a fibrosis-associated increase, 
reinforcing a model of microvascular/coagulation and 
bile-acid nuclear-receptor axis attenuation alongside 
heightened integrin/Rap-driven adhesion signaling in 
liver fibrosis.

Healthy-to-pathogenic fibroblast transition links fibrosis 
signatures to HCC
To interrogate whether liver fibrosis–specific fibroblast 
(FB) signatures are linked to hepatocellular carcinoma 
(HCC) progression, we assembled public HCC single-
cell datasets, identified the FB compartment by canon-
ical stromal markers and graph clustering (Fig. 3A), 
and harmonized samples to remove batch effects (Fig. 
3B). Subclustering of the FB compartment resolved 
two reproducible states—healthy FB and pathogenic 
FB—within HCC tissues (Fig. 3C). Marker validation 
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Fig. 2. Liver-specific fibroblast programs exhibit endocrine–
metabolic rewiring and suppression of xenobiotic/GPCR 
signaling.

  (A) Dot plot showing statistical comparisons between fibrosis 
and control groups across organs. x-axis: organ; y-axis: −log2(fold 
change).

  (B) Bar charts ranking organ-specific upregulated pathways in 
fibroblasts from fibrotic samples.

  (C) Bar charts ranking organ-specific downregulated pathways in 
fibroblasts from fibrotic samples.

  (D) Venn diagram showing overlap of upregulated DEGs among 
fibrotic fibroblasts across organs.

  (E) Venn diagram showing overlap of downregulated DEGs 
among fibrotic fibroblasts across organs.

  (F) Enrichment analyses of liver-specific fibrosis-associated DEGs. 
  (G, H, I) Violin plots displaying representative liver-specific DEGs 

across organs. Upper left: Liver; Upper right: Kidney; Lower 
left: Lung; Lower right: Heart.

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

supported the annotation: COL3A1 (fibrotic collagen 
I/III program), PDGFRB (activated/perivascular fibro-
blast receptor), and ACTA2 (αSMA; myofibroblast 
contractility) localized selectively to  the pathogenic 
FB state, whereas their expression was low or absent 
in healthy FBs (Fig. 3D–F). Trajectory inference on 
FBs delineated a continuous pseudotime axis from 
healthy to pathogenic FBs, indicating a unidirectional 
activation transition within the tumor microenviron-
ment (Fig. 3G). We then overlapped genes significantly 

correlated with pseudotime with the liver-fibrosis 
differentially expressed gene (DEG) sets defined in our 
cross-organ analysis. Among positively correlated / 
fibrosis-upregulated genes, two robust overlaps emerged 
(Fig. 3H): SULF2—an extracellular heparan-sulfate 
6-O-endosulfatase that potentiates TGF-β/Wnt/VEGF 
availability (Fig. 3J)—and TIMP3, a membrane-bound 
metalloproteinase inhibitor that restrains ADAM17/
TACE sheddase activity (Fig. 3K). Conversely, among 
negatively correlated / fibrosis-downregulated genes, 
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Fig. 3. Transition from healthy to pathogenic fibroblasts 
links fibrotic signatures to HCC progression.

  (A–B) Distribution of major cell types and disease status in 
HCC datasets.

  (C) Composition of fibroblast (FB) subtypes.
  (D–F) Expression patterns of pathogenic FB markers 

(COL3A1, PDGFRB, ACTA2).
  (G) Pseudotime trajectory depicting the transition from 

normal to pathogenic FBs.

  (H) Venn diagrams illustrating the overlap of positively 
correlated and upregulated DEGs shared between HCC and 
liver fibrosis datasets.

  (I) Venn diagrams illustrating the overlap of negatively 
correlated and downregulated DEGs shared between HCC 
and liver fibrosis datasets.

  (J–L) Regression analyses showing the relationship 
between SULF2, TIMP3, and TNFAIP8 expression levels and 
pseudotime progression.

(A) (B) (C)

(D)

(G)

(E) (F)

(H) (I)

(J) (K) (L)
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we identified a single overlap (Fig. 3I): TNFAIP8, 
a  TIPE-family regulator implicated in inflammatory 
homeostasis (Fig. 3L). Collectively, these results estab-
lish that the liver-specific fibrotic FB program captured 
in non-malignant fibrosis converges with the healthy 
to pathogenic FB transition within HCC, nominating 
SULF2 and TIMP3 as reinforced pro-fibrotic axes and 
TNFAIP8 as a diminished anti-inflammatory node 
during tumor-associated stromal remodeling.

Liver fibrosis–specific communication axes converge on 
HGF–MET and AGT–AGTR1B
Across public single-cell fibrosis datasets from heart, 
liver, kidney, and lung, we inferred intercellular 
communication and visualized pathway activity per 
cell type using heatmaps (Fig. 4A–H). Representative 
pathways recapitulated known biology (e.g., robust 
VEGF signaling in endothelial cells), supporting the 
validity of the approach. Comparative analysis across 
the four organs progressively narrowed the liver-
specific signal to AGT (renin–angiotensin) and HGF 
pathways: relative to the other organs, liver fibrosis 
showed selective enrichment of these axes, whereas 
matched healthy controls lacked such reinforcement 
(liver fibrosis/control: Fig. 4A-B; kidney fibrosis/
control: Fig. 4C–D; lung fibrosis/control: Fig. 4E–F; 
heart fibrosis/control: Fig. 4G–H). Focusing on 
ligand–receptor pairs, we detected stellate to hepa-
tocyte HGF to MET and hepatocyte to stellate AGT 
to AGTR1B interactions (Fig. 4I–J), both of which were 
independently validated in an external HCC dataset 
(Fig. 4K–L). Consistent with these network-level find-
ings, expression maps confirmed upregulation of HGF 
and AGT within their respective source cell popula-
tions in liver fibrosis (Fig. 4M–P), suggesting that these 
paired signals may facilitate the stromal–parenchymal 
coupling that promotes progression from liver fibrosis 
toward hepatocarcinogenesis.

DISCUSSION
Using cross-organ single-cell integration with explicit 
subtraction of pan-fibrotic injury programs, we 
isolated liver-selective fibroblast (FB) features that 
may connect fibrogenic remodeling to hepatocarcino-
genesis. Specifically, liver FBs exhibited an endocrine–
metabolic rewiring dominated by Glucagon/Insulin/
FOXO signaling (upregulated), and cell–cell commu-
nication inference prioritized HGF–MET and AGT–
AGTR1B as liver-enriched hepatocyte–FB axes that 
were not detected in the corresponding heart/kidney/
lung FB signatures under the same criteria. Linking 
non-malignant fibrosis to independent HCC cohorts 
further highlighted concordant nodes—SULF2/TIMP3 
(fibrosis  , progression ) and TNFAIP8 (fibrosis , 
progression )—supporting persistence of these liver-
selective programs into the HCC tumor microenviron-
ment. This cross-organ comparator framework helps 

mitigate a common limitation of organ-restricted 
studies (i.e., conflating shared injury responses with 
organ-specific mechanisms) while refining and 
extending foundational concepts of hepatic stellate cell 
activation in fibrogenesis and recent single-cell atlases 
of stromal heterogeneity (Kamm & McCommis, 2022; 
Ramachandran et al. 2019).

Clinically, fibrosis stage is a dominant predictor 
of  adverse outcomes across NAFLD/MASLD and is 
tightly linked to hepatocarcinogenesis (replace citations 
with short author–year format). Our trajectory analyses 
indicated that the healthy-to-pathogenic FB continuum 
observed in HCC mirrored liver-fibrosis programs, 
providing a mechanistic bridge between stromal remod-
eling in chronic liver disease and pro-tumorigenic 
niche evolution. In particular, we identified SULF2 
and TIMP3 as fibrosis-upregulated, pseudotime-posi-
tive nodes and TNFAIP8 as a fibrosis-downregulated, 
pseudotime-negative node—features consistent with 
an extracellular milieu that (i) increases growth-factor 
bioavailability via heparan sulfate editing, (ii) alters 
protease/inhibitor balance linked to cytokine/EGFR-
ligand shedding, and (iii) relaxes immune homeostatic 
constraints. While causal roles require perturbational 
testing, these patterns map naturally onto established 
HSC biology (ECM deposition, contractility, cytokine 
signaling) (Tsuchida & Friedman, 2017; Higashi et al.
2017; Matsumoto & Nakamura, 2014) and stromal 
circuits highlighted by single-cell atlases (Kamm & 
McCommis, 2022; Ramachandran et al. 2019).

A central insight from our cell–cell communication 
analysis is the selective reinforcement of  HGF–MET 
and AGT–AGTR1B in liver fibrosis relative to  other 
organs. HGF–MET is a canonical hepatotropic axis 
governing hepatocyte survival, proliferation, and 
regeneration; genetic and pharmacologic perturbations 
modulate liver repair and fibrosis (Ghazanfar et al. 2024; 
Zhao et al. 2022; Nakamura et al. 2011; Matsumoto & 
Nakamura, 1992). Its stellate-to-hepatocyte reinforce-
ment in fibrosis and recurrence in HCC is consistent 
with a regeneration–fibrosis coupling model, whereby 
regenerative signaling within a matrix-rich niche can 
be co-opted to favor oncogenic progression. The renin–
angiotensin system (RAS) signal we observe—hepa-
tocyte-derived AGT engaging stellate-cell AGTR1B 
(AT1)—is especially plausible in the liver, a principal 
source of circulating angiotensinogen (Matsusaka 
et  al. 2012). Extensive preclinical evidence supports 
that AngII/AT1 signaling promotes HSC proliferation, 
TGF-β induction, contractility, and collagen produc-
tion, while RAS blockade or activation of the ACE2/
Ang-(1–7)/Mas counter-axis is anti-fibrotic (Yoshiji 
et al. 2001; Wei et al. 2000; e  Silva & Silveira, 2013; 
Murphy et al. 2015). Together, these hepatocyte–FB 
axes plausibly couple fibrogenic remodeling to regen-
erative and microenvironmental rewiring, creating 
conditions permissive for malignant transformation.
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Fig. 4. Liver fibrosis–specific communication networks converge 
on the HGF–MET and AGT–AGTR1B signaling axes.

  (A–H) Heatmaps showing pathway activities derived from cell–
cell interaction analyses. Liver fibrosis/control: (A–B); kidney 
fibrosis/control: (C–D); lung fibrosis/control: (E–F); heart fibrosis/
control: (G–H).

  (I, K) Dot plots highlighting ligand–receptor gene pairs identified 
between hepatic stellate cells and other cell types within the 
HGF and AGT signaling pathways in liver fibrosis and HCC 
datasets.

  (J, L) Dot plots highlighting ligand–receptor gene pairs identified 
from other cell types to hepatic stellate cells in the same 
pathways.

  (M, O) Violin plots showing the expression levels of HGF and 
AGTR1B (human ortholog: AGTR1) in stellate (fibroblast) 
populations.

  (N, P) Violin plots showing the expression levels of MET and AGT 
in hepatocyte populations.

(A) (B)

(C) (D)

(E) (F)

(G) (H)

(I) (J) (K) (L)

(M) (N) (O) (P)
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Nevertheless, several limitations remain. First, cross-
organ subtraction is limited by severity mismatches 
in our cohort assembly (Table 1): the liver dataset 
is enriched for "End Stage" and "Cirrhosis" samples, 
whereas heart and kidney datasets capture broader 
disease spectrums and potentially earlier stages. 
Consequently, some signals classified as "liver-selective" 
may partially reflect advanced-stage/decompensation 
remodeling rather than purely organ-intrinsic biology, 
and we interpret our prioritized targets as most directly 
relevant to advanced liver disease. Second, pseudotime 
is an inferred surrogate for progression; complemen-
tary spatial transcriptomics and lineage/temporal read-
outs will be essential to verify physical apposition and 
directionality along the HGF/AGT axes. Third, while 
overlap with HCC trajectories supports cross-context 
consistency, mechanistic testing—e.g., perturbation 
of HGF–MET and/or AGT–AGTR1B, and modula-
tion of fibrosis-aligned nodes such as SULF2/TIMP3, 
in primary human stellate cells and precision-cut liver 
slices—will be required to assess whether multi-node 
targeting can blunt pathogenic FB transitions and 
downstream niche remodeling.

In sum, cross-organ single-cell integration that 
subtracts shared injury programs prioritizes liver-selec-
tive fibroblast circuitry and nominates two hepatocyte–
FB axes—HGF–MET and AGT–AGTR1B—as plausible 
links between liver fibrosis and HCC risk. Rather than 
broadly stating "actionable entry points" we frame test-
able predictions: in precision-cut liver slices, perturba-
tion of HGF–MET and/or AGT–AGTR1B signaling, 
alone or in combination with modulation of  fibrosis-
aligned nodes such as SULF2/TIMP3, should shift 
the liver-FB program away from a fibrosis-to-HCC 
trajectory. In parallel, the liver-FB Glucagon/FOXO 
endocrine–metabolic signature represents a candidate 
biomarker readout to monitor pathway engagement 
and progression in advanced MASLD/MASH and 
early HCC.
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