Efficacy and safety of Febuxostat Versus Allopurinol in Hyperuricemic patients with or without Gout: A meta-analysis

Bin Fan¹, Ping Zhang¹, Xiaoyu Li¹

¹ Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, China

Correspondence to: Xiaoyu Li
Department of Geriatrics, Beijing Jishuitan Hospital, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
TEL.: 86-13693233313; E-MAIL: xiaoyuli5066@163.com

Submitted: 2020-06-16 Accepted: 2020-09-21 Published online: 2020-09-22

Key words: Hyperuricemic; febuxostat; allopurinol; gout: meta-analysis

Abstract

OBJECTIVES: We conducted a meta-analysis to compare the febuxostat and allopurinol in hyperuricemic patients diagnosed with or without Gout.

MATERIAL AND METHODS: We searched the Pubmed, Cochrane and Embase electronic databases to identify the studies concerning febuxostat versus allopurinol in treatment of hyperuricemic subjects and/or gout updated to May, 2020. After rigorous evaluation on quality, the data was extracted from included publications.

RESULTS: A total of 10 articles involving 6989 subjects were included, with 4841 receiving febuxostat and 2148 using allopurinol. The pooled analysis showed that the febuxostat group (40, 80, or 120 mg QD) was greater in reducing serum urate levels than the allopurinol group (200 or 300 mg) (RR=1.56, 95% CI=1.37-1.78, P<0.00001). In addition, daily dosing of febuxostat 80 mg had greater efficacy to that of febuxostat 40 mg (RR=1.47, 95% CI=1.34-1.60, P<0.00001), and febuxostat 120 mg/day was associated with lower serum urate levels versus febuxostat 80 mg/day (RR=1.08, 95% CI=1.02-1.13, P=0.004). In terms of the adverse events, the pooling overall adverse events data did achieve advantage in the febuxostat group (RR=0.96, 95% CI=0.92-1.00, P=0.04). While, liver function test abnormalities, diarrhea, skin rashes, musculoskeletal and connective tissue disorders, gastrointestinal disorders, headaches, the statistical significance between the two groups fail to be achieved (P≥0.05).

CONCLUSION: Febuxostat was superior in reducing the serum urate levels of hyperuricemic patients, while with an acceptable tolerability profile than allopurinol. Moreover, our result suggested that dose titration to febuxostat 120 mg daily was superior to other daily dosing with regard to urate-lowering efficacy.

Abbreviations:
SUA - serum uric acid
ULT - urate-lowering pharmacotherapy
XO - xanthine oxidase
MeSH - Medical Subject Heading
INTRODUCTION

The hyperuricemia is a common biochemical aberration defined as serum uric acid (SUA) levels exceeding 6.8 mg/dl in the extracellular fluid, and is often manifested clinically as the deposition disease with urate crystal, gout (Pillinger et al. 2007). Gout is an inflammatory arthritis, manifesting as the deposition of monosodium urate crystals in synovial fluid and around the joints (Ruoff and Edwards 2016). The gout patients may suffer painful and destructive arthropathy, which will lead to impaired quality of life (Zhu et al. 2011).

Prolonged hyperuricemia is not only associated with high risk of gout-related disability, but also progression to metabolic disorders (Chen et al. 2007; Neogi 2011; Johnson et al. 1999). The primary therapy of hyperuricemia needs long-term urate-lowering and maintaining serum urate concentration belowing 360 lmol/L (6.0 mg/dL), which leads to the elimination of gout flares and resolution of urate crystal deposition (Perez-Ruiz et al. 2002; Sarawate et al. 2006).

The urate-lowering pharmacotherapy (ULT) is used to treat hyperuricemia, involve lowering urate production using a xanthine oxidase (XO) inhibitor. Allopurinol, a XO inhibitor, has been widely used to treat gout since the 1960s (https://www.medicines.org.uk/emc/product/5693/smpc. Accessed 08 April 2020; Underwood 2006). It is usually used for the prophylaxis of flares with low-dose, daily colchicine (Pascart and Frédéric 2019), and commonly approved at 300 mg daily in clinical practice. However, allopurinol is associated with multiple adverse effects, including increased toxicity when the rate of glomerular filtration is reduced, which may lead to the depression of bone marrow, hepatotoxicity and a risk of hypersensitivity syndrome (Gois and Souza 2013).

Febuxostat, a selective inhibitor of XO, was recently approved to treat hyperuricemia in gout subjects (Uloric® Full Prescribing Information. Takeda Pharmaceuticals North America, Inc., Deerfield, IL; 2009). In contrast to allopurinol, febuxostat is a non-purine XO inhibitor (Tayar et al. 2012). Thus, febuxostat is distinct from purine-like XO inhibitors, in its structure, inhibits both reduced and oxidized forms of XO and has little influence on other purine- and pyrimidine-metabolizing enzymes (Grabowski et al. 2011).

Compared to allopurinol, febuxostat has the advantages of reducing urate-lowering and a similar tolerability profile in previous studies (Xu et al. 2015; Wang et al. 2013; Huang et al. 2014). However, at the doses tested, non-inferiority and superiority of febuxostat 40 mg daily compared with allopurinol 300 mg daily was not reached in previous study (Xu et al. 2015). Moreover, febuxostat appears to be associate with a significant high risk of cardiovascular disease than the allopurinol 300 mg daily group (White et al. 2018). It is, thus, suggests that effective managements are warranted. Our study performed a meta-analysis aiming to compare the efficacy and safety of febuxostat versus allopurinol in patients with hyperuricemic with or without Gout.

MATERIALS AND METHODS

Search strategy

Two authors take a systematic screening process of the electronic databases, such as Pubmed, Embase, Cochrane library up to May 2020 independently. The process was based on the Medical Subject Heading (MeSH) terms and the keywords: “hyperuricemic” AND “febuxostat” AND “allopurinol” AND “gout”. We also hand-searched the reference materials for additional relevant studies.

Tab. 1. Presented a brief description of these eligible studies

<table>
<thead>
<tr>
<th>Study year</th>
<th>Country</th>
<th>No. of patients</th>
<th>Treatment regimen</th>
<th>Study design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Febuxostat</td>
<td>Allopurinol</td>
<td>Febuxostat (mg/d)</td>
</tr>
<tr>
<td>Beeker 2005</td>
<td>America, Canada</td>
<td>507</td>
<td>253</td>
<td>80, 120</td>
</tr>
<tr>
<td>Beeker 2009</td>
<td>America, Canada</td>
<td>883</td>
<td>139</td>
<td>80, 120</td>
</tr>
<tr>
<td>Beeker 2010</td>
<td>America, Canada</td>
<td>1513</td>
<td>756</td>
<td>40, 80</td>
</tr>
<tr>
<td>Schumacher 2008</td>
<td>America</td>
<td>670</td>
<td>268</td>
<td>80, 120, 240</td>
</tr>
<tr>
<td>Kamatani P2 2011</td>
<td>Japan</td>
<td>19</td>
<td>19</td>
<td>40, 60</td>
</tr>
<tr>
<td>Kamatani P3 2011</td>
<td>Japan</td>
<td>122</td>
<td>121</td>
<td>40</td>
</tr>
<tr>
<td>Huang 2014</td>
<td>China</td>
<td>344</td>
<td>172</td>
<td>40, 80</td>
</tr>
<tr>
<td>Xu 2015</td>
<td>China</td>
<td>336</td>
<td>168</td>
<td>40, 80</td>
</tr>
<tr>
<td>Yu 2016</td>
<td>China</td>
<td>54</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>Zhang 2019</td>
<td>China</td>
<td>393</td>
<td>197</td>
<td>40, 80</td>
</tr>
</tbody>
</table>
Inclusion Criteria
Articles that meet the following criteria should be cited: (1) patients were underwent using febuxostat versus allopurinol; (2) patients were clinical diagnosis of hyperuricemic (SUA exceeding 6.8 mg/dL) with or without gout; (3) the interested outcomes were efficacy and toxicity.

Risk-of-Bias Assessments
The risk of bias was assessed by two investigators, separately. Article quality was rated using Newcastle-Ottawa Quality Assessment Scale. Publication bias was assessed using funnel plot.

Data selection
Contents were extracted by two researchers independently, and the third author help check for accuracy and resolve the disagreement. From each of the eligible researches, the main information based on the following: name of the first author, publication year, patient number, treatment regimen, study design, number and outcomes measures.

Statistical analysis
The Review Manager version 5.3 software conducted for statistical analysis. Between-study heterogeneity was examined using I2 statistic (Higgins and Thompson 2002). Articles with an I2 value larger than 50% were considered to have high heterogeneity, and the random-effects model was conducted. On the contrary, the fixed-effects model was used (Higgins et al. 2003). \(P<0.05 \) was identified as statistically significant difference.

RESULTS
Characteristics of included studies
Totally, 136 articles were retrieved initially for evaluation. Relying on the criteria described in the methods, 15 studies were further evaluated, while some did not provide enough detail of results of two groups. Therefore, 10 articles (Xu et al. 2015; Huang et al. 2014; Becker et al. 2005; Becker et al. 2009; Becker et al. 2010; Schumacher et al. 2008; Kamatani et al. 2011; Kamatani et al. 2011; Yu et al. 2016; Zhang et al. 2019) were included. Figure 1 presented the search process. Table 1 presented a brief description of these eligible studies.

Outcomes and synthesis of results
Pooled analysis of urate-lowering efficacy comparing febuxostat with allopurinol.

As shown in Figure 2-3, there is significant statistical difference of urate-lowering efficacy when comparing the two approaches (RR=1.56, 95% CI=1.37-1.78, \(P<0.00001 \)). Subgroup analysis by the daily dose of febuxostat, superiority of febuxostat 40 mg/day (RR=1.12, 95% CI=1.03-1.22, \(P=0.01 \)) versus allopurinol was demonstrated. The same comparison was conducted comparing febuxostat 80 mg/day (RR=1.73, 95% CI=1.59-1.89, \(P<0.00001 \)) or 120 mg/day (RR=2.04, 95% CI=1.84-2.26, \(P<0.00001 \)) versus allopurinol.

Subgroup analysis of urate-lowering efficacy by dose-titration
The pooled data showed that urate-lowering efficacy in subjects was superior with febuxostat 80 mg/day than febuxostat 40 mg/day (RR=1.47, 95% CI=1.34-1.60, \(P<0.00001 \)) (Figure 4-5). While, febuxostat 120 mg daily
Fig. 2. Pooled analysis of urate-lowering efficacy comparing febuxostat with allopurinol.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Febuxostat Events</th>
<th>Total</th>
<th>Allopurinol Events</th>
<th>Total</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
<th>Risk Ratio M-H, Random, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 40mg Febuxostat vs Allopurinol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beeker 2010</td>
<td>342</td>
<td>757</td>
<td>318</td>
<td>755</td>
<td>7.2%</td>
<td>1.07 [0.96, 1.20]</td>
</tr>
<tr>
<td>Huang 2014</td>
<td>47</td>
<td>172</td>
<td>41</td>
<td>172</td>
<td>4.8%</td>
<td>1.15 [0.80, 1.65]</td>
</tr>
<tr>
<td>Kamatani P1 2011</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>4.2%</td>
<td>1.45 [0.94, 2.25]</td>
</tr>
<tr>
<td>Kamatani P3 2011</td>
<td>100</td>
<td>122</td>
<td>84</td>
<td>120</td>
<td>6.9%</td>
<td>1.17 [1.01, 1.35]</td>
</tr>
<tr>
<td>Xu 2015</td>
<td>72</td>
<td>160</td>
<td>55</td>
<td>159</td>
<td>5.7%</td>
<td>1.30 [0.99, 1.71]</td>
</tr>
<tr>
<td>Zhang 2019</td>
<td>77</td>
<td>181</td>
<td>83</td>
<td>184</td>
<td>6.1%</td>
<td>0.94 [0.75, 1.19]</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>1401</td>
<td>1408</td>
<td>35.0%</td>
<td>1.12 [1.03, 1.22]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>646</td>
<td>592</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $\tau^2 = 0.00; \chi^2 = 5.67, df = 5 (P = 0.34); I^2 = 12%$</td>
<td>Test for overall effect: $Z = 2.54 (P = 0.01)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.1.2 80mg Febuxostat vs Allopurinol |
Beeker 2005	185	249	88	242	6.6%	2.04 [1.70, 2.45]
Beeker 2009	501	606	64	139	6.6%	1.80 [1.49, 2.16]
Beeker 2010	507	756	318	755	7.3%	1.59 [1.44, 1.76]
Huang 2014	77	172	41	172	5.3%	1.88 [1.37, 2.57]
Schumacher 2008	183	253	102	263	6.7%	1.87 [1.57, 2.21]
Xu 2015	93	158	55	159	6.0%	1.70 [1.32, 2.19]
Zhang 2019	125	188	83	184	6.6%	1.47 [1.22, 1.78]
Subtotal (95% CI)	2382	1914	45.0%	1.73 [1.59, 1.89]		
Total events	1671	751				
Heterogeneity: $\tau^2 = 0.01; \chi^2 = 9.75, df = 6 (P = 0.14); I^2 = 38\%$	Test for overall effect: $Z = 12.37 (P < 0.000001)$					

1.1.3 120mg Febuxostat vs Allopurinol |
Beeker 2005	193	242	88	242	6.7%	2.19 [1.83, 2.62]
Beeker 2009	241	277	64	139	6.6%	1.89 [1.57, 2.28]
Schumacher 2008	209	265	102	263	6.8%	2.03 [1.73, 2.40]
Subtotal (95% CI)	784	644	20.0%	2.04 [1.84, 2.26]		
Total events	643	254				
Heterogeneity: $\tau^2 = 0.00; \chi^2 = 1.29, df = 2 (P = 0.53); I^2 = 0\%$	Test for overall effect: $Z = 13.79 (P < 0.000001)$					
Test for subgroup differences: $\chi^2 = 88.38, df = 2 (P < 0.000001), I^2 = 97.7\%$						

Total (95% CI) | 4567 | 3966 | 100.0% | 1.56 [1.37, 1.78] |
| Total events | 2960 | 1597 |
| Heterogeneity: $\tau^2 = 0.06; \chi^2 = 123.93, df = 15 (P < 0.00001); I^2 = 88\%$ | Test for overall effect: $Z = 6.56 (P < 0.00001)$ |

Fig. 3. Funnel plot of urate-lowering efficacy comparing febuxostat with allopurinol.
had superior urate-lowering efficacy to that of febuxostat 80 mg daily (RR=1.08, 95% CI=1.02-1.13, P=0.004) (Figure 6-7).

Pooled analysis of AEs comparing febuxostat with allopurinol
Systematic analysis of overall AEs data were shown in the Figure 8-9. There is statistical difference when comparing two approaches (RR=0.96, 95% CI=0.92-1.00, P=0.04). While, liver function test abnormalitie, diarrhea, skin rashes, musculoskeletal and connective tissue disorders, gastrointestinal disorders, headaches, the difference between the two approaches had no statistical significance (P≥0.05) (Figure 10-11).

DISCUSSION
Allopurinol has been approved as the first-line medication to treat hyperuricemia (Gois and Souza 2013). Allopurinol along with its natural metabolite oxypurinol are purine base analogues that inhibit production of XO and urate. Febuxostat, a developed nonpurine selective inhibitor of XO, is a newly adopted urate-lowering agent accepted to treat hyperuricemia with or without gout (https://www.medicines.org.uk/emc/product/487/smpc. Accessed 26 July 2019).

In contrast to allopurinol, febuxostat inhibits both reduced and oxidized forms of XO and has little influence on other purine- and pyrimidine-metabolizing enzymes (Grabowski et al. 2011; Schumacher et al. 2008). On this basis, we launched a meta-analysis to evaluate the efficacy and toxicity using of febuxostat versus allopurinol to treat hyperuricemia patients with or without gout.

Several studies have assessed the efficacy and safety of febuxostat versus allopurinol. For example, Becker et al (2005) evaluated the effect of febuxostat versus allopurinol in 762 gout patients, and found that superior urate-lowering efficacy for febuxostat (80 or 120 mg QD) than allopurinol (300 mg QD). Kamatani et al. (2011) showed that febuxostat (40 mg QD) demonstrated superior urate-lowering than allopurinol (200 mg QD). Becker (2010) reported that the urate-lowering efficacy of febuxostat 40 mg was statistically

Fig. 4. Pooled analysis of urate-lowering efficacy comparing febuxostat 80 mg/day with febuxostat 40 mg/day.

Fig. 5. Funnel plot of urate-lowering efficacy comparing febuxostat 80 mg/day with febuxostat 40 mg/day.
Fan et al: Efficacy of Febuxostat Versus Allopurinol in Hyperuricemia

non-inferior to that of allopurinol, while febuxostat 80 mg was superior versus allopurinol. While, in a randomized, double-blind, non-inferiority study by Zhang (2019), the primary endpoint of non-inferiority of febuxostat 40 mg/day was not achieved than the allopurinol (300 mg/day), which was contrasts with previous articles in China (Ye et al. 2013; Roddy and Doherty 2010) and North America (Schumacher et al. 2008; Kamatani et al. 2011).

The pooled results of our study indicated that the febuxostat at ascending doses of 40, 80, and 120 mg/day was superior to allopurinol with regard to safety and efficacy. The result suggests that therapy with either dose of febuxostat is superior in UL efficacy compared with allopurinol treatment.

In addition, our study has demonstrated that febuxostat at doses of 80 mg/day is more likely to achieve sUA <6.0 mg/dL than febuxostat 40 mg/day, as well as the result comparing febuxostat 120 mg daily versus febuxostat 80 mg daily. It is possible that the dose titration of febuxostat could contribute to the final responses.

In Xu’s (2015) study, it reported that febuxostat 80 mg/day had higher urate-lowering efficacy than febuxostat 40 mg/day and allopurinol 300 mg/day. The evidence from the study seems to indicate that febuxostat had urate-lowering efficacy depend on the dose. Moreover, considering that they only included subjects are Chinese subjects, which indicates that generic febuxostat products might have effect on the differences to some extent. Further studies should be conducted to access the differences between Chinese populations and European people.

Furthermore, as with all pharmacological therapies, potential treatment-related adverse events and drug–drug interactions may be taken into consideration. Our results do indicate that the safety profiles were similar between the two drugs. While, the pooling occurrence of overall treatment-related adverse events data did achieve advantage in the febuxostat group. This suggests that febuxostat represents an alternative therapy for hyperuricaemia with or without gout, especially for patients who cannot tolerate allopurinol.
Our study was based on well-maintained and updated databases. However, we must acknowledge that potential bias exists by the intrinsic different study design, clinical heterogeneity among studies. Such as different renal function and populations, which may have influence on the comparison of interested results. Thus, further studies should aim to identify subgroup patients, to refine patients who are more likely to achieve clinical benefit from the febuxostat group.

In conclusion, our meta-analysis revealed that febuxostat demonstrated superior effective in lowering serum urate with increasing dose (40, 80 or 120 mg QD) than allopurinol, and that dose titration to febuxostat 120 mg daily was superior to other daily dosing with regard to urate-lowering efficacy. In terms of the safety profiles, our results do indicate that the safety profiles were similar between the two drugs. This indicates that febuxostat is a safe and effective alternative to allopurinol, and that febuxostat may be particularly suitable for patients who cannot tolerate allopurinol.

DECLARATIONS

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication
Not applicable.

Availability of data and material
Not applicable.
Fan et al: Efficacy of Febuxostat Versus Allopurinol in Hyperuricemia

Fig. 10. Pooled analysis of AEs comparing febuxostat with allopurinol.
Fan et al: Efficacy of Febuxostat Versus Allopurinol in Hyperuricemia

Funding
None.

Competing interests
There are no potential conflicts of interest to disclose.

Author Contributions
Bin Fan is responsible for the literature research, clinical studies, experimental studies, data acquisition & analysis, manuscript preparation; Ping Zhang is responsible for the manuscript editing & review; Xiaoyu Li is responsible for the guarantor of integrity of the entire study, study concepts & design; definition of intellectual content. All authors read and approved the final manuscript.

Acknowledgements
Not applicable.

REFERENCES
Fan et al: Efficacy of Febuxostat Versus Allopurinol in Hyperuricemia

25 Uloric® Full Prescribing Information. Takeda Pharmaceuticals North America, Inc., Deerfield, IL; 2009.

