Stimulation of nitric oxide, cytokine and prostaglandin production by low-molecular weight fractions of probiotic *Lactobacillus casei* lysate

Eva Kmoníčková 1,2, Miloslav Kverka 3, Helena Tlaskalová-Hogenová 3, Petra Kostecká 1,4, Zdeněk Zídek 1

1 Institute of Experimental Medicine, Academy of Sciences of the Czech Republic
2 Institute of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
3 Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
4 1st Faculty of Medicine, Charles University, Prague, Czech Republic

Correspondence to: Assoc Prof. RNDr. Eva Kmoníčková, PhD.
Department of Pharmacology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic,
Vídeňská 1083, 142 20 Prague 4, Czech Republic.
TEL: +420 241062109; e-MAIL: kmonickova@biomed.cas.cz

Submitted: 2012-09-01 Accepted: 2012-11-15 Published online: 2012-12-26

Key words: probiotics; lysate; cutoff microfiltrates; nitric oxide; prostaglandin E2; cytokines; immunostimulation

Abstract

OBJECTIVES: Major medical indications of probiotic bacteria are conditions associated with the gastrointestinal tract. They exhibit not only the local but also systemic effects, the molecular mechanisms of which are poorly understood. We hypothesized that the action at remote sites of the body could be at least partially attributed to substances of the low molecular mass released from digested bacteria and able to cross the intestinal barrier. The aim of the study was the analysis of immunobiological properties of bacterial lysates and characterization of chemical constituents participating on this mode of action. **METHODS:** *Lactobacillus casei* probiotic strain DN-114001 was employed. Lysates were prepared by passing bacteria through a French press (150 psi) followed by lyophilisation. The fractions were prepared by the microfiltration of the crude lysate using the 3-, 10-, 30-, 50-, and 100-kDa cutoff filters (Amicon® Ultra 0.5 ml, Millipore Corp.). This procedure completely removes biologically active bacterial macromolecules such as peptidoglycan (PGN), lipoteichoic acid (LTA) and lipopolysaccharide (LPS). Effects of microfiltrates on the in vitro production of nitric oxide (NO), cytokines, and prostaglandin E2 (PGE2) were investigated in rat peritoneal cells. **RESULTS:** The original crude lysate (≤10 μg/ml) activated the biosynthesis of NO, PGE2, and secretion of cytokines. The amount of the lysate needed for the preparation of microfiltered fractions exhibiting immunostimulatory effects was 10-fold higher (100 μg/ml). The molecules with the molecular mass ≤3 kDa were responsible for approximately 45% and 83% of the NO- and PGE2-enhancing activities of the crude lysate, respectively. The microfiltered fractions of the lysate also enhanced secretion of interleukin-6 and tumor necrosis factor-α but not that of interleukin-10 and interferon-γ. **CONCLUSION:** The *Lactobacillus casei* probiotic strain DN-114001 contains low molecular mass (≤3 kDa) molecules possessing immunostimulatory properties. Their chemical nature remains to be identified.
INTRODUCTION

Major medical indications of probiotic bacteria are conditions associated with the gastrointestinal tract (Culligan et al. 2009). The mechanisms of the health beneficial effects of probiotics are poorly understood but they are supposed to be attributed to enhancing the immune parameters associated with acute liver injury (Haro et al. 2009). Furthermore, a randomized clinical trial has shown that orally ingested L. casei strain Shirota prevents the recurrence of superficial bladder cancer (Asu et al. 1995). Interestingly, probiotic L. casei might be able to contribute to the prevention against colorectal cancer by decreasing the levels of certain forms of xenobiotic-metabolizing enzymes (Matušková et al. 2011).

Not only live and dead bacteria but also the lysate preparations possess the beneficial therapeutic effects. A composite lysate from eight bacterial species (coli-fagina) (Vetrano et al. 2008) as well as a simple lysate from Escherichia coli (Konrad et al. 2003) ameliorate the severity of experimental colitis in mice. Orally administered lysozyme lysate from L. bulgaricus (deodon) exhibits the antitumor activity in mice and humans and decreases the mortality of mice experimentally infected with Klebsiella pneumoniae and Listeria monocytogenes (Popova et al. 1993). A significant decline in the virulence of E. coli O157:H7 has been observed after the treatment with lysates of L. acidophilus (Kim et al. 2006). Lysates from the probiotic Enterococcus lactis and L. acidophilus have the cytoprotective potential against the drug induced liver injury (Sharma et al. 2011).

The aim of our experiments was to elucidate whether the bacterial lysates possess the immunomodulatory properties, and to find out what type of chemical constituents are responsible for this mode of action.

MATERIAL AND METHODS

Animals and cells

Female Wistar rats, 8–11 wks old, were purchased from Velaz (Prague, CZ). Animals were kept in transparent plastic cages maintained in an Independent Environmental Air Flow Animal Cabinet (ESI Flufrance, Wissous, France) under controlled 12/12 h light/dark cycle (lights on 06.00 a.m.), temperature (22±2°C), and relative humidity (50±10%) conditions. Animals, killed by cervical dislocation, were intraperitoneally injected with 16 ml of sterile saline. Pooled peritoneal cells collected from 3–7 animals were washed, resuspended in culture medium, and seeded into 96-well round-bottom microplates (Costar) in 100-μl volumes, 2 × 10^6 cells/ml. The total mixed peritoneal cell population was maintained at 37°C, 5% CO₂ in humidified Heraeus incubator. Complete RPMI-1640 culture medium contained 10% heat-inactivated foetal bovine serum (FBS), 2 mM L-glutamine, 50 μg/mL gentamicin, and 5 × 10^−5 IFN-γ secretion (Tejada-Simon et al. 1999). Lactobacilli provide protection against many Gram-positive and Gram-negative bacterial pathogens (Jebur 2010). For example, L. casei strain DN-114001 decreases the duration of common respiratory tract infections (Cobo Sanz et al. 2006; Guillellemard et al. 2010; Turchet et al. 2003). L. casei strain CRL 431 has favorable effects on the immune parameters associated with acute liver injury (Haro et al. 2009).
Preparation of bacterial lysate
Lysates were prepared according to the principles reviewed by Chisti and Moon-Young (1986). Briefly, lactobacilli resuspended in distilled water were disrupted by passing three times through a French press (1500 psi). 1 g of the lysate originated from approximately 4 x 10^12 bacteria. To kill possible remnants of viable bacteria, the lysate was heated to 60°C for 30 min. Resulting lysates were lyophilized and diluted to a working concentration of 30 mg/ml. The sterility of all components was verified by both aerobic and anaerobic cultivation before the use. These samples are designated as crude lysates (CL). To further enhance the requirement for bacteria- and gross debris-free samples, the CL was centrifuged and passed through 0.22 μm filters (CLF lysate variant).

Centrifugal microfiltration of lysate
Following our recently described procedure (Zídek et al. 2012; Zídek and Kmoníčková 2012), the biologically active bacterial macromolecules (LPS, PGN, LTA) were removed from the CLF samples using the Amicon Ultra 0.5 mL Centrifugal devices (Millipore Corp., Billerica, MA). The filter membrane of 1 cm² active area is made of the Millipore Ultrasel goal, laying cellulosic cellulose. The filters with molecular weight cutoffs of 3, 10, 30, 50, and 100 kDa were used. According to the producer recommendations, the spin times were 30 min for 3 kDa, 15 min for 10 kDa, and 10 min for 30, 50, and 100 kDa cutoff microfiltration units.

Bacterial macromolecules (PGN, LTA)
* Bacillus subtilis* LTA (lot No. 12111102-022M4108V) and PGN (lot No. 017067/1-R017067/1V) were purchased from Sigma. Stock solutions were prepared in phenol red-free RPMI-1640 culture medium (without FBS).

Nitric oxide (NO) assay
The cells were cultured 24 h in presence of bacterial macromolecules (LPS, PGN, LTA), applied either alone or in the presence of the rat or mouse recombinant IFN-γ (R&D Systems, Minneapolis, MN), respectively. The concentration of nitrates in supernatants of cells was taken as a measure of NO production (Marletta et al. 1988). It was detected in individual, cell-free samples (50 μl) incubated 5 min at ambient temperature with an aliquot of a Griess reagent (1% sulphanilamide/0.1% naphthyldiamine/2.5% H3PO4). The absorbance at 540 nm was recorded using a microplate spectrophotometer (Tecan, Austria). A nitrite calibration curve was used to convert the absorbance to μM nitrite.

Cytokine and prostaglandin E2 assay
The cells were cultured 24 h in presence of LPS, PGN, and LTA applied alone. Concentration of cytokines (TNF-α, IFN-γ, IL-6, IL-10) and prostaglandin E2 in cell supernatants was determined using ELISA (R&D Systems, Minneapolis, MN).

Statistical analysis
Analysis of variance (ANOVA), subsequent Dunnetts`s multiple comparison test and graphical presentation of data were done using the Prism program (GraphPad Software, San Diego, CA).

RESULTS

Effects of lysate microfiltrates on NO production
Both CL (crude lysate) and CLF (centrifuged plus 0.22 μm-filtered CL) activated the high output production of NO by rat peritoneal cells (Figure 1A). Irrespective of the type of molecular weight cutoff microfiltration (i.e. 3 kDa, ≤10 kDa, ≤30 kDa, ≤50 kDa, and ≤100 kDa), the resulting fractions (MF) stimulated the production of NO as well. The effects of MFs were less prominent than those of CL and CLF (Figure 1A). The NO-enhancing effects of all distinct MFs were very similar. Yet, the differences among them were statistically significant (F/4,30/=4.60, p=0.005). The significance proved to be due to the slightly higher activity of the MF100 fraction in comparison to the fractions containing molecules with lower molecular weight (F/1,12/=12.76, p=0.0038; as compared to the fraction MF3). Evaluated by the AUC analysis, the effectiveness of MFs to stimulate NO was approximately 30–45% of appropriate control i.e. the CLF counterpart (Figure 1B). The tendency towards the enhanced effectiveness in dependence on the presence of molecules with higher molecular weight was observed.

Effects of lysate microfiltrates on cytokine secretion
All preparations differentially and dose-dependently stimulated secretion of the pro-inflammatory cytokines TNF-α and IL-6 (Figure 2). The most effective was the crude lysate (CL) which also stimulated the production of IFN-γ and IL-10. Its prominent ability to activate the IFN-γ production was most apparent at the concentration of 0.1 μg/ml. It was less effective at concentrations >10 μg/ml.

The CLF variant of lysate (i.e. centrifuged plus 0.22 μm-filtered CL) was much less effective than was the CL one (Figure 2). The 10-fold higher concentration (1 μg/ml) was required to augment the TNF-α and IL-6 secretion. The IL-10 secretion was only mildly enhanced with the concentration of 10 μg/ml.

The microfiltration of CLF led to the attenuation of immunostimulatory potential of the original lysate (Figure 2). When applied at concentration of 100 μg/ml, both 3 kDa and 100 kDa cutoff microfiltrates (MF3 and MF100, respectively) were highly potent to stimulate...
Fig. 1. Production of NO by \textit{L. casei} lysate and its microfiltration fractions (MF) differing in the content of molecules with specified molecular weight (A). The MFs were prepared by the microfiltration of the indicated concentrations of the lysate variant CLF using the 3 kDa to 100 kDa cutoffs, respectively. NO was determined after the 24-h culture of rat (n=4) peritoneal cells using the Griess reagent. Each point is mean±SEM. The data are representative of two identical experiments. Relative efficacy of the preparations to induce NO production was evaluated in terms of the area under curve (AUC). The AUC of the CLF preparation was taken as 100% (B). In order to eliminate the bias that may be caused by the attenuated NO-enhancing ability of samples applied at concentrations > 100 μg/ml (see Figure 1A), the AUC analysis has been based on the data up to the concentrations ≤100 μg/ml.

Fig. 2. Secretion of cytokines by rat (n = 5) peritoneal cells upon the 24-h exposure to \textit{L. casei} lysate and its microfiltration fractions (MF) differing in the content of molecules with specified molecular weight. The MF3 and MF100 were prepared from the indicated concentrations of the lysate variant CLF that was treated by the 3 kDa and 100 kDa cutoff microfiltration, respectively. Concentration of cytokines was assayed by ELISA. Each point is mean±SEM. The data are representative of two identical experiments.
secretion of TNF-α and IL-6. However, only MF100 enhanced significantly, though only marginally, the IL-10 secretion (p<0.01).

The ability to stimulate IFN-γ was confined to the crude lysate (CL) merely.

Effects of lysate microfiltrates on prostaglandin E₂ production

All lysate samples induced the formation of PGE₂ (Figure 3). The highest effectiveness was exhibited by the crude lysate (CL) that showed prominent activity at as low concentration as 0.1 μg/ml. The effects of CL and CLF (i.e. centrifuged plus 0.22 μm-filtered CL) lysate variants were nearly identical when applied at the 10 μg/ml concentration. This concentration turned out to be a minimum requirement for the activation of PGE₂ production by the MF fractions obtained by microfiltration of CLF. Stimulatory effects of relatively high concentration of all MFs (100 μg/ml) resembled closely the effects of the CL and CLF. Slight but statistically significant differences among individual MFs to closely the effects of the CL and CLF. Microfiltration of CLF. Stimulatory effects of relatively high concentration of all MFs (100 μg/ml) resembled closely the effects of the CL and CLF. Slight but statistically significant differences among individual MFs to augment PGE₂ production were observed. The onset of significant enhancement was found after the 10 μg/ml dose of MF50 and MF100 (p<0.05, and p<0.05, respectively). The MF3 and MF10 were ineffective at this concentration.

Effects of peptidoglycan and lipoteichoic acid on production of NO

PGNs and LTAs of B. subtilis and S. aureus origin enhanced production of NO (Figure 4). The microfiltration treatment of PGN and LTA stock solutions, including the passage through the 100 kDa cutoff centrifugal units, led to the complete disappearance of NO-stimulatory effects.

DISCUSSION

Probiotic bacteria do not disrupt the intestinal mucosal integrity and do not translocate to the spleen, liver, kidney and blood (Pan et al. 2011; Paturi et al. 2008). Despite of it, they exhibit not only the local but also systemic effects. The mechanisms of local action of probiotics are only insufficiently understood. Even less known are the mechanisms of their systemic health benefits.

Bacteria are phagocytosed and intracellularly digested by splenocytes, monocyte/macrophages and dendritic cells (Cai et al. 2010; Maassen et al. 2000). This process depends on the expression of TLR2 receptors (Matsuzaki et al. 2004; Shida et al. 2006). It may lead to the release of immunobiologically active components of bacterial cell walls and/or other cell structures. The immunomodulatory effects of various preparations of lactic acid bacteria including crude lysates have been suggested to be mainly due to the complex macromolecules of bacterial cell walls such as peptidoglycans (PGNs) and lipoteichoic acids (LTAs). PGNs possess multiple immunomodulatory functions (Bhatt et al. 2009; Chow et al. 2009; Kengatharan et al. 1998). They are absorbed probably undigested (Forestier et al. 1999) from the intestinal lumen (Lichtman et al. 1991) and translocated systemically. The intestinal permeability of PGNs is facilitated by the PGN recognition protein-3 (PGlyRP3) (Bu et al. 2010). Also LTAs possess prominent immunostimulatory activities (Zídek et al. 2010). There are, however, no data on possible transintestinal transport of LTAs. Their contribution to the systemic effects of probiotics is considered unlikely (Yipp et al. 2002).

One of the possibilities of systemic effects could be the transport of locally induced immune mediators to
remote sites of the body. Cytokines that are primarily produced in the intestine can be found in plasma and lung, although in much lower amount than in the original site of the induction (Narita et al. 2004).

The digestion of bacteria has been shown to lead to the release of low-molecular mass fragments of bacterial macromolecules such as muropeptides (Billot-Klein et al. 1997; Vermeulen & Gray 1984). These findings have become a rational background for our hypothesis that molecules of low molecular mass participate on the systemic effects of probiotics. It may be supposed that these molecules possess higher intestinal permeability and systemic distribution than PGN and LTA with very high molecular size.

Our present data prove that the low-molecular weight fractions of bacterial lysates do possess the immunobiological activity of the original lysate. It should be underlined that the microfiltration fractions are devoid of all traces of PGN and LTA as well as of LPS (Zídek & Kmoníčková 2012; Zdek et al. 2012). It has been observed that the immunostimulatory properties of microfiltrates are almost entirely due to chemical species with the molecular size ≤3 kDa. The digestion of bacteria has been shown to lead to chemical species of the low-molecular mass ≤3 kDa. The properties of microfiltrates are almost entirely due to molecules of low molecular mass participating on the immunomodulatory effects are bound to the low-molecular weight compounds of probiotic lactobacilli merely or are a common property of other bacteria.

CONCLUSION

Live bacteria, heat-killed ones and lysates thereof are known to activate a number of immune mediators. The present results provide unequivocal evidence showing that the stimulatory effects of lysate preparations are significantly contributed to by chemical species of the molecular mass ≤3 kDa.

ACKNOWLEDGEMENTS

Financial support from Grant Agency of the Czech Republic no. CZ:GA ČR:GA303/12/0535 and no. CZ:GA GACR:GA305/08/0535 is gratefully acknowledged. The authors wish to thank Mgr. Jana Křížková for her skilful technical assistance.

Potential Conflicts of Interest: None disclosed.

REFERENCES

Neuroendocrinology Letters Vol. 33 Suppl. 3 2012 • Article available online: http://node.nel.edu

Stimulation by probiotic lysate

