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Immunocytes modulate ganglionic nitric oxide release 
which later affects their activity level
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Abstract Pedal ganglia excised and maintained in culture for up to 2 h, release NO at low 
levels.  The range can vary between 0 to 1.1 nM.  Non-stimulated immunocytes 
do not significantly stimulate ganglionic NO release when incubated with pedal 
ganglia.  However, ganglia exposed to immunocytes that had been previously 
activated by a 30 min incubation with interleukein1β, release NO significantly 
above basal levels. In these experiments, 91 ± 2.5% of the non-stimulated 
immunocytes exhibited form factors in the 0.72 to 0.89 range (sampled prior 
to ganglionic addition), whereas 62 ± 10.3% of the interleukin 1β stimulated 
immunocytes had form factors in the 0.39 to 0.49 range, demonstrating activa-
tion.  Addition of the nitric oxide synthase inhibitor, L-NAME (10–4 M), inhib-
ited basal ganglionic NO release as well as that initiated by exposing the ganglia 
to activated immunocytes.  Interestingly, non activated immunocytes, following 
ganglionic exposure, exhibited activity levels in the 13% range, representing a 
non significant increase.  Cells exposed to interleukin 1β had a 65% activity level 
at the beginning of the experiment, followed by a drop of activity to 19 ± 3.2% 
after ganglionic exposure.  Repeating this last observation in the presence of 
L-NAME (10–4 M), brought the activity level of the immunocytes back to the 
pre-ganglionic exposure level of activity, demonstrating that ganglionic NO was 
involved in down regulating immunocyte activity.  
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Abbreviations & Units
cNOS constitutive nitric oxide synthase; 
NO nitric oxide; 
ASW artificial sea water; 
ANOVA analysis of variance; 
SEM standard error of the mean; 
FF form factor; 
L-NAME Nω-nitro-L-arginine methyl ester; 
NOS nitric oxide synthase

Introduction

Mytilus edulis ganglionic tissues contain a popula-
tion of immunocytes that can freely enter the neural 
structures via the open circulatory system [1].  In 
other reports, we demonstrated the presence of mi-
croglia associated with neurons, as well as nerve fibers, 
in the same neural tissues [2,3].  The reports also 
demonstrate that the ganglionic microglia can become 
active after ganglionic excision and egress from the tis-
sue through the nerves that are severed.   Additionally, 
we have shown that Mytilus neural tissues contain 
mammalian-like cytokines, suggesting their signaling 
potential in these tissues [4–9].  The cytokine reports 
further reveal that mammalian cytokines can activate 
invertebrate immunocytes, making them amoeboid 
and motile, as well as secrete cytokines.  Recently, it 
was shown that Mytilus edulis possesses constitutive 
nitric oxide synthase (cNOS) processes in its nervous 
and immune tissues [10,11].  This complements the 
reports demonstrating that cNOS-derived nitric oxide 
has the potential to down regulate immunocyte activ-
ity, causing the cells to become round, inactive and 
non-adherent [3,10–16].

Given the demonstration of the above signaling 
processes, it was of interest to initiate studies on 
the effect of immunocytes and ganglionic signaling, 
which may affect ganglionic functions, demonstrat-
ing neuroimmune communication.  In the present 
report, we demonstrate that interleukin 1 (IL-1β) 
activates immunocytes and by exposing Mytilus edulis 
ganglionic tissues to these cells, nitric oxide release is 
initiated, which then alters the activity state of the 
immunocytes.  Taken together, invertebrate immune 
and neural tissues have the ability to communicate 
with each other.  

Material and Methods

Mytilus edulis, a marine bivalve mollusk, were 
maintained in the laboratory for three weeks prior to 
their dissection [17].  Invertebrate immunocytes were 
collected and processed as described elsewhere in detail 
[18,19].  The pedal ganglia were removed and placed 
on ice and rinsed in artificial sea water (ASW; Instant 
Ocean, Inc., Boston, MA) and cell-free (verified by light 
microscopic inspection) filtered and centrifuged (900 x 
g for 10 min) hemolymph 1:1 by volume [20,21].  This 
incubation medium also contained streptomycin (50 
mg/100 ml), penicillin (30 mg/100 ml) and gentamycin 
(50 mg/ml) to reduce any bacterial presence [2].  The ex-
cised ganglia (6 per test in 2 ml of the indicated medium 

x 5 replicates) were incubated for 1 h at room tempera-
ture. Pharmacological exposure of the immunocytes to 
the respective drugs occurred for an additional 30 min 
followed by a brief washing.  At the end of this time pe-
riod, drug exposed immunocytes (106 immunocytes/ in 
1 ml) were added to the ganglionic preparations for ni-
tric oxide (NO) detection.  After a 30 min delay in which 
NO release did not occur to any significant extent above 
background, NO evaluation began. 

The NO levels recorded at the indicated times were 
combined with four other values (preparations) per 
treatment (±SEM) and compared via a paired ANOVA 
for repeated measures to vehicle-treated controls; the 
criterion for significance was P < 0.05.  Vehicle con-
trols were those containing or involving non-treated 
tissues.  

NO Determination

The respective tissues were bathed in the incuba-
tion medium described earlier.   NO release was moni-
tored with a NO-selective microprobe manufactured 
by World Precision Instruments (Sarasota, FL).  Tip 
diameter of the probe (200 µm) permitted the use of a 
micromanipulator (Zeiss-Eppendorff) attached to the 
stage of an inverted microscope (Nikon Diaphot) to 
position the sensor 20 µm above the ganglion surface.  
The system was calibrated daily by adding potassium 
nitrite to a solution of potassium iodide, resulting in 
the liberation of a known quantity of NO.  The probe 
was routinely cleaned by gentle rinsing to remove cel-
lular debris that tends to accumulate on it.  The probes 
used for these experiments are routinely maintained 
in ASW and attached to the metering system when 
not in use.  The probe is allowed to equilibrate for 
30 min in artificial seawater before being transferred 
to vials containing the tissue for another 30 min.  
Manipulations/handling of the cells was only per-
formed with glass instruments.  Each experiment was 
repeated 5 times and the NO mean values obtained 
were graphed to represent the actual NO release (± 
SEM).  

The data obtained was then evaluated by a paired 
ANOVA for repeated measures. Data acquisition was 
by the computer interfaced DUO-18 software (World 
Precision Instruments, Sarasota, FL.).  The experi-
mental values were then transferred to Sigma-Plot 
and -Stat (Jandel, CA) for graphic representation and 
evaluation.  Data gatherers were unaware of the ex-
perimental conditions.

Morphological analysis of glia and immunocytes

The activity state of the immunocytes was measured 
via morphological measurements.  This determina-
tion is based on cell area and perimeter measure-
ments as measured by image analysis software (Image 
Analytics, Inc., Hauppauge, NY).  Form-factor (FF) 
calculations were performed as previously described. 
[22,23].  The observational area used for measurement 
determinations and frame-grabbing of the respective 
immunocytes was 400 µm in diameter.  The computer-
assisted microscopic image analysis system (Zeiss Ax-

George B. Stefano, Kirk Mantione,  Dolisha Jones, Wei Zhu, Federico Casares & Patrick Cadet



58 Neuroendocrinology Letters Nos.1/2 Feb-Apr Vol.25, 2004 Copyright © Neuroendocrinology Letters ISSN 0172–780X   www.nel.edu 59Neuroendocrinology Letters Nos.1/2 Feb-Apr Vol.25, 2004 Copyright © Neuroendocrinology Letters ISSN 0172–780X   www.nel.edu

Ganglionic nitric oxide

iophot fitted with Nomarski and phase contrast optics) 
was the same as previously described [24].  The cells 
were analyzed for conformational changes indicative 
of either activation (amoeboid and mobile) or inhibi-
tion (round and stationary). The lower the FF number, 
the longer the perimeter and the more amoeboid the 
cellular shape.  The proportion of activated cells was 
determined as previously described [24].  Briefly, with 
phase-contrast optics round cells appear bright yellow 
whereas amoeboid cells dark.  Based on this color dif-
ference, the software is manually taught to differenti-
ate these colors and then count the cells in each group 
and by comparison, the percent activation can be cal-
culated from the uniform number of cells harvested for 
examination (400 ±  11/ 0.2 ml).  It should also be noted 
that the activated state (amoeboid conformation) of hu-
man and invertebrate cells is correlated to biochemical 
adhesion molecule alterations [23] as well as cytokine 
production [4,6]. 

Results

Pedal ganglia excised and maintained in culture for 
up to 2 h, release NO at low levels during this period.  
The range can vary between 0 to 1.1 nM [10,25] (Fig-
ure 1).  Invertebrate immunocytes, that also release 
NO [10,11,14,25,26], produce it within the same con-
centration range [27] (Figure 1).  Thus, it was of in-
terest to determine if immunocytes added to cultured 
ganglia would enhance basal/constitutive ganglionic 
NO production since immune cells, e.g., microglia 
and immunocytes, have been found and identified in 
molluscan ganglia, specifically, Mytilus pedal ganglia 
[1–3,13].  

In this regard, non-stimulated immunocytes do not 
significantly stimulate ganglionic NO release when 
incubated with pedal ganglia (Figures 1–3).  However, 
ganglia exposed to activated immunocytes (106 / ml; 
[pre-exposed for 30 min to an effective concentration 
of interleukin 1β, 1 ng] [8] for 30 min before being 
added to the ganglionic incubation medium), release 
significant levels of NO above basal levels (Figures 
1–3) after 30 min of the cells addition.  In these experi-
ments, 91 + 2.5% of the non-stimulated immunocytes 
exhibited form factors in the 0.72 to 0.89 range 
(sampled prior to ganglionic addition), whereas 62 ± 
10.3% of the interleukin 1β stimulated immunocytes 
had form factors in the 0.39 to 0.49 range, having an 
amoeboid shape, as well as being motile (n=5; com-
parison of the% activated by a one–tailed student’s t-
test revealed a P < 0.005).  Addition of the nitric oxide 
synthase (NOS) inhibitor, L-NAME (10–4 M), inhibited 
basal ganglionic NO release as well as that initiated 
by exposing the ganglia to activated immunocytes, 
substantiating the identity of the material being moni-
tored (Figure 2).  

Given the above results, it was of interest to deter-
mine the activity state of the immunocytes following 
their incubation with the non-exposed and activated 
immunocyte exposed ganglia (Figure 3).  Non acti-
vated immunocytes, following ganglionic exposure, ex-

hibited activity levels in the 13% range, representing a 
non significant increase (Figure 3 inset).  Cells exposed 
to interleukin 1β had a 65% activity level at the begin-
ning of the experiment, followed by a drop of activity 
to 19 ± 3.2% after ganglionic exposure.  Repeating this 
last observation in the presence of L-NAME (10–4 M), 
brought the activity level of the immunocytes back to 
the pre-ganglionic exposure level of activity (Figure 3, 
inset), demonstrating that ganglionic NO was involved 
in down regulating immunocyte activity.  

Discussion

The present study demonstrates that Mytilus im-
mune cells, i.e., immunocytes, have the ability to alter 
ganglionic processes, i.e., cNOS derived NO release.  
Additionally, ganglionic NO release can then affect 
immunocyte activity; and in this instance, it down 
regulates the active cells.  Taken together, these data 
demonstrate that immune neural signaling occurs in 
this mollusk.  

This current study supports data obtained in previ-
ous studies that demonstrate that cNOS derived NO 
can down regulate Mytilus immunocytes, as well as 
human leukocytes [11,12].  Furthermore, in numerous 
reports we demonstrate that morphine stimulation is, 
in part, coupled to NO release, accounting for its im-
mune down regulating properties related to cell and 
proinflammatory activities [10,15,28–33].  The pres-
ent report demonstrates that within the behavioral 
response of the ganglia to a “proinflammatory-type” 
stimulus, the ganglia cause NO release to counter 
this physiological state, down regulating the activated 
immunocytes.  Thus, it would appear that a normal 
function of cNOS derived NO is to limit immune acti-
vation [31].  In this regard, we surmise that the basal, 
unstimulated levels of NO produced by the ganglia 
may limit microenvironmental noise[27,31,34] by 
maintaining cells in a mild inhibitory state.  

With regard to ganglionic function, Mytilus ganglia, 
among many functions,  serve to modulate the organ-
isms lateral gill ciliary (beating rate)  and foot activity 
(extension, contraction and widening as well as the 
laying down of byssus threads) [35,36,37,38,39].  Do-
paminergic transmission results in the contraction of 
the foot, bringing it into the shell, whereas in the gill, 
it inhibits the beating of the lateral gill cilia that nor-
mally beat and allow water (food, oxygen and waste) to 
move through.   Thus, in a coordinated manner, if do-
pamine signaling is occurring, the water stops flowing 
and the foot comes back into the shell environment.  
In more recent times, we found that NO can inhibit 
dopamine release from pre-synaptic terminals in the 
ganglia of Mytilus [40].  Given the present findings of 
activated immunocytes initiating NO release, we sur-
mise that this signaling gas stops dopaminergic signal-
ing, allowing for ciliary activation and foot extension, 
leading to water flow, which “flushes” the organism’s 
internal tissues.  In a natural environment, such a 
“normal” stimulus may be originated by bacteria.  
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Figure 1.  The effect of exposing interleukin 
1β stimulated immunocytes (Imm) to 
excised Mytilus pedal ganglia. Thirty minutes 
following incubation stimulated (S) and non-
stimulated (NS) cells with pedal ganglia, the 
ganglia produce significantly higher nitric 
oxide levels only in the S exposure.  Details 
of the preparations are found in the text. 
Each test involved 6 ganglia per treatment, 
replicated five times.  

Figure 2.  The effect of L-NAME treatment to 
ganglia exposed to interleukin 1β stimulated 
immunocytes (SI). Thirty minutes following 
incubation of stimulated and non-stimulated 
cells with pedal ganglia, the ganglia produce 
significantly higher nitric oxide levels only 
in the stimulated immunocyte (SI) exposure.  
The addition of L-NAME to the non-SI exposed 
ganglia resulted in simply lower basal NO 
ganglionic levels .In the SI scenario, pre-
ganglionic exposure to L-NAME suppressed 
the SI effect.  Details of the preparations are 
found in the text. Each test involved 6 ganglia 
per treatment, replicated five times.  

Figure 3.  The effect of the various 
treatments on the activity state of the 
immunocytes. Control immunocytes 
exhibit form factors in the 0.79 to 1 
range, indicating a round non-motile 
conformation (see inset 1). Additionally, 
when first obtained from the animal 
only 7-9% of the cells are active.   
Interleukin 1β stimulated  immunocytes 
(SI), in total, have approximately 
65% of the cells in an amoeboid shape 
(inset 2) and are motile.  30 min after 
exposing the ganglia to SI, only about 
18% of the cells remain active (inset 3).  
Lastly, adding L-NAME to the incubation 
medium (10-4 M), and repeating the 
previous experiment, we find that about 
63% of the cells are active, exhibiting 
amoeboid conformations and moving 
(inset 4).   ANOVA analysis revealed 
statistical significance (P < 0.01) in 
the comparison of control to SI + G and 
L-NAME exposed preparations and in 
comparing the L-NAME with the non-L-
NAME 30 min cells.  
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Furthermore, as in the case of recently activated 
immunocytes, once NO is released and begins to down 
regulate these same cells, normal activity may resume.  
Certainly, at the present time, a cascade of possibili-
ties exists.  However, it is important to note that these 
demonstrated responses to excitation all fall within 
the realm of possibilities discussed due to the fact that 
these neurological processes are present.  This study 
also reveals that in this particular invertebrate, which 
has a relatively long life span, neuroimmune commu-
nication occurs.   
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