48-hours administration of nifedipine in spontaneous preterm labor – Doppler blood flow assessment of placental and fetal circulation

Mariusz Grzesiak 1,2, Rehana B. Ahmed 3, Jan Wilczynski 1,2

1 Department of Feto-Maternal Medicine & Gynecology, “Polish Mother” Memorial Research Institute, Lodz, Poland
2 3rd Department of Obstetrics & Gynecology, Medical University of Lodz, Poland
3 Division of English Studies, the Medical University of Lodz, Poland

Correspondence to: Mariusz Grzesiak, MD., PhD.
“Polish Mother” Memorial Research Institute
Department of Feto-Maternal Medicine & Gynecology
Rzgowska Str. 281/289, 93-338 Lodz, Poland.
tel: +48 42 271 10 71; fax: +48 42 271 10 10; e-mail: mariusz.grzesiak@gmail.com

Submitted: 2013-02-21 Accepted: 2013-07-03 Published online: 2013-12-03

Key words: preterm labor; tocolysis, nifedipine; Doppler; fetal circulation

Abstract

OBJECTIVES: The aims were to assess the placental and fetal circulation during nifedipine tocolysis within the first 48 hours of therapy.
METHODS: Placental and fetal circulation was assessed in Doppler ultrasound examination prior to nifedipine administration and then after 24 and 48 hours. Maternal heart rate and PI in uterine arteries were evaluated as well as FHR, RI and PI of UA and MCA. E/A-wave ratio for A-V valves, MPI and SF were calculated for both ventricles independently. To determine changes over time in all study variable analysis of variance (ANOVA) for repeated measurements followed by Tukey-Kramer’s multiple comparison test was used. The effects of additional clinical covariates were checked.
RESULTS: Uterine and umbilical blood flow patterns were not altered significantly during administration of nifedipine tocolysis. While MCA Doppler indices such as RI and PI were unchanged, the evaluation of MCA PSV revealed a transient significant decrease after 24 hours. A resolution of this distraction was observed within the following 24 hours. No significant changes were observed in direct fetal cardiac function parameters calculated separately for both ventricles.
CONCLUSIONS: The decrease of MCA PSV after 24 hours of treatment was isolated and transient hemodynamic distraction observed during treatment. Neither fetal cardiac parameters nor other Doppler indices were changed. Therefore oral administration of nifedipine seems not to alter uterine nor fetal arterial blood flow pattern seriously. As significant changes were observed by different authors, further studies should be performed to verify the optimal total dose of nifedipine and its influence on hemodynamic conditions.
INTRODUCTION

The data about preterm birth is becoming increasingly worrisome. This complication is responsible for approximately 75% of all neonatal deaths and 50% of childhood neurological morbidities (Hack & Fanaroff 1999; Slattery & Morrison 2002). Apart from great progress in medical care, the rate of preterm labor seems to increase in most of Western countries (Hoyert et al. 1999; 1997; Furuhashi 2006). Present treatment policy in spontaneous preterm labor is concentrated on postponing delivery for at least 48 hours. Benefits are associated with completing a course of steroids in order to induce fetal lung maturation and/or ‘in utero’ transfer to the referal centre. Calcium channel blockers were primarily dedicated to treatment of coronary heart disease and hypertension. By binding L-type channels they block the flow of extracellular calcium into cardiac and smooth muscle cells. It results in relaxation of the muscles (Sorkin et al. 1985). Another important feature of CCBs is lack of tachyphylaxis or withdrawal symptoms (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994). Nifedipine is the most commonly used calcium channel blocker to delay preterm delivery with such indisputable advantages as oral administration and a low purchase cost. However, we should remember that this drug is not licensed specifically for tocolytic treatment (RCOG 2011). Hypotension, tachycardia, flushes, headache, increased liver enzymes, nausea and dizziness are well known maternal side effects (Childress & Katz 1994).
The impact of nifedipine administration on fetal circulation in preterm labor treatment exceeded more than 30 degrees. Color flow imaging was used to visualize the flow through the main uterine artery medial to the external iliac artery. Furthermore the ascending branch was selected for PI calculation (Arduini et al. 1990). The waveforms were assessed for possible presence of notch and uterine artery score was calculated (Ghosh et al. 2006). This technique was the same for both sides. For umbilical artery Doppler sampling site was located at the half of the distance between fetal and placental end of the cord. The circle of Willis and the middle cerebral artery were identified when a transverse view of the fetal brain was obtained. The measurements were taken in the middle part of MCA. Peak systolic velocity, resistance (RI) and pulsatility (PI) index were calculated for both vessels. Finally the cerebroplacental ratio (CPR) based on MCA-PI/UA-PI formula was calculated (Baschat & Gembruch 2003).

Apical or basal approach was recommended to obtain the four chamber view of the fetal heart. Blood flow across atroventricular valves was visualized in Color Doppler technique. The sample gate was placed distal to A-V valves at the brightest colors of the blood flow. Biphasic velocity waveforms were recorded with two diastolic peaks. The ratio between E- and A-waves were calculated. A-V valve insufficiency was recorded if present (Abuhamad & Chaoui 2010).

The myocardial performance index (MPI) for right and left ventricle was calculated in two steps; the first time period (isovolumetric (a)) was calculated between the end of the A-wave and the beginning of the next E-wave during the ventricular filling phase, and the second period (b), the ejection time, was recorded in the aortic or pulmonary outflow tracts. MPI value was calculated using formula (a–b)/b (Pellett et al. 2004; Tei et al. 1995).

The motion of ventricular walls and intraventricular septum were visualized in M-mode technique. Shortening fractions were calculated for both ventricles independently.

The results were analyzed according to well known statistical methods by using StatSoft Statistica for Windows, release 6.0 (StatSoft, Inc., Tulsa, USA). To compare changes in response to treatment analysis of variance (ANOVA) for repeated measurement with the Tukey-Kramer’s post hoc test were used. The p<0.05 was used as a definition of statistical significance.

The project was approved by local Research Ethics Committee. All patients participating in the study gave their signed informed consent.

RESULTS

Twenty-seven pregnant women met the inclusion criteria and joined the study. The mean maternal and gestational age was 29.4±4.4 years and 29.2±3.1 weeks, respectively. The median gravidity was 1 with a quartile range of 1–2 and the median parity was 1 with a quartile range of 1–2. None of the patients delivered within 72 hours. We noticed that there were no significant changes in maternal heart rate when comparing pretreatment values (90.4±9.9 bpm) and those after 24 (90.5±13.6 bpm) and 48 hours of nifedipine administration (88.7±10.5 bpm). The Doppler examination of blood flow in uterine arteries revealed no changes during nifedipine tocolysis (Table 1). The measurements of RI, PI and PSV in umbilical arteries did not result in significant alterations (Table 2). The CPR calculations did not reveal significant changes after 24 and 48 hours of nifedipine administration (Figure 2). MCA PSV demonstrated decrease after 24 hours of nifedip-
ine administration however, this change was transient (Figure 1). We noticed that there were no significant changes in maternal heart rate before nifedipine and when comparing 24 and 48 hours results. FHR as well as E/A ratio, SF, MPI values, calculated separately for each ventricle, revealed no changes in fetal cardiac function during treatment (Table 3). These observations were consistent with ANOVA post-hoc analysis. We did not observe the effect of gestational age and parity on the above results.

Tab. 1. Doppler indices in uterine arteries (UtA) before and after (24/48 hours) nifedipine treatment.

<table>
<thead>
<tr>
<th></th>
<th>before Mean±SD</th>
<th>after 24 hours Mean±SD</th>
<th>after 48 hours Mean±SD</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right uterine artery</td>
<td>0.77±0.27</td>
<td>0.76±0.29</td>
<td>0.73±0.18</td>
<td>0.5911</td>
</tr>
<tr>
<td>Left uterine artery</td>
<td>0.80±0.21</td>
<td>0.80±0.25</td>
<td>0.85±0.30</td>
<td>0.3666</td>
</tr>
</tbody>
</table>

Doppler indices in umbilical (UA) and middle cerebral arteries (MCA) before and after (24/48 hours) nifedipine treatment.

Tab. 2. Doppler indices in umbilical (UA) and middle cerebral arteries (MCA) before and after (24/48 hours) nifedipine treatment.

<table>
<thead>
<tr>
<th></th>
<th>before Mean±SD</th>
<th>after 24 hours Mean±SD</th>
<th>after 48 hours Mean±SD</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Umbilical artery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>0.63±0.06</td>
<td>0.60±0.07</td>
<td>0.62±0.07</td>
<td>0.1198</td>
</tr>
<tr>
<td>PI</td>
<td>0.98±0.14</td>
<td>0.90±0.19</td>
<td>0.95±0.17</td>
<td>0.1494</td>
</tr>
<tr>
<td>PSV (cm/s)</td>
<td>45.4±10.5</td>
<td>43.5±8.5</td>
<td>46.9±9.4</td>
<td>0.2849</td>
</tr>
<tr>
<td>Middle cerebral artery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RI</td>
<td>0.79±0.06</td>
<td>0.77±0.05</td>
<td>0.79±0.05</td>
<td>0.3271</td>
</tr>
<tr>
<td>PI</td>
<td>1.75±0.33</td>
<td>1.71±0.30</td>
<td>1.81±0.31</td>
<td>0.5141</td>
</tr>
<tr>
<td>PSV (cm/s)</td>
<td>43.2±10.6</td>
<td>38.4±7.7</td>
<td>42.6±8.3</td>
<td>0.0171</td>
</tr>
<tr>
<td>CPR</td>
<td>1.82±0.36</td>
<td>1.87±0.63</td>
<td>1.95±0.41</td>
<td>0.6926</td>
</tr>
</tbody>
</table>

Tab. 3. Fetal cardiac function parameters before and after (24/48 hours) nifedipine treatment.

<table>
<thead>
<tr>
<th></th>
<th>before Mean±SD</th>
<th>after 24 hours Mean±SD</th>
<th>after 48 hours Mean±SD</th>
<th>p-value (ANOVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHR (bpm)</td>
<td>145.5±7.9</td>
<td>142.1±7.4</td>
<td>141.6±8.2</td>
<td>0.5542</td>
</tr>
<tr>
<td>TV E/A</td>
<td>0.61±0.07</td>
<td>0.63±0.09</td>
<td>0.64±0.08</td>
<td>0.2602</td>
</tr>
<tr>
<td>MV E/A</td>
<td>0.63±0.07</td>
<td>0.62±0.09</td>
<td>0.61±0.09</td>
<td>0.5588</td>
</tr>
<tr>
<td>RV SF (%)</td>
<td>35.7±4.8</td>
<td>35.8±3.4</td>
<td>34.9±4.1</td>
<td>0.6974</td>
</tr>
<tr>
<td>LV SF (%)</td>
<td>36.7±4.7</td>
<td>37.9±3.5</td>
<td>36.8±4.3</td>
<td>0.5308</td>
</tr>
<tr>
<td>RV MPI</td>
<td>0.47±0.16</td>
<td>0.45±0.09</td>
<td>0.47±0.14</td>
<td>0.8866</td>
</tr>
<tr>
<td>LV MPI</td>
<td>0.48±0.12</td>
<td>0.46±0.10</td>
<td>0.46±0.11</td>
<td>0.7565</td>
</tr>
</tbody>
</table>

DISCUSSION

Hemodynamic conditions are particular different during pregnancy. Animal studies presented conflicting data about changes in the circulatory system after nifedipine. Harake et al. (1987) detected reduction of uterine blood flow and oxygen content in fetal blood in instrumented pregnant sheep with nifedipine intravenous administration. Blea et al. (1997) used nifedipine doses corresponding with those in humans. They found the evidence of hypoxia and acidosis in the sheep fetus. No changes in maternal and placental compartments were detected. In Holbrook's et al. research (1989), a single bolus of another calcium channel blocker, nicardipine, was administered to instrumented sheep and no alteration in uterine and fetal arterial blood flow were observed.

In our study, analysis of blood flow dynamics revealed no changes in uterine artery PI as well as in the presence/absence of notch. The measurements of RI and PI as well as PSV in umbilical artery did not result in significant changes. Our results suggested that uteroplacental circulation remained unaffected during nifedipine treatment; however our examinations were performed at intervals of 24 and 48 hours from the administration of nifedipine.

Studies on the same subjects presented different observations. Guclu et al. (2004) examined the group of 21 pregnant women and fetuses prior to and after 3 hours of nifedipine loading. In such short term observation no changes in maternal and fetal compartment were observed. S/D and RI ratios were unchanged in both uterine and umbilical artery. These authors continued their research on the same problem, but Doppler examination was performed prior to and after 12, 24 and 48 hours of treatment. A significant fall in uterine artery pulsatility index were observed at 24 and 48 hours while no changes in the blood flow in umbilical artery were detected at the same point of time (Guclu et al. 2006). Pirhonen et al. (1990) reported significant decrease of uterine artery S/D ratio due to 20mg oral nifedipine. Different observations concerning umbilical artery blood flow assessment were presented by several authors. Moretti et al. (1990) and Hanretty et al. (1989) found no hemodynamic changes after nifedipine treatment in uteroplacental circulation however they focused on pregnant women with preeclampsia. Transient significant reduction of umbilical artery PI was reported by Rizzo et al. (1987) but that change was withdrawn after 90 minutes. Lima et al. (2009) presented data about increase of mean peak systolic velocity in right uterine artery and umbilical arteries within 5 and 24 hours of tocolysis. The one-side change in uterine artery blood flow was probably due to placental location. The changes in UA PSV could be influenced by insonation angle and should have been further investigated according to authors' suggestions. In other studies no significant changes were detected if measure-
The impact of nifedipine administration on fetal circulation in preterm labor treatment

The fetal Doppler examination performed by Lima et al. (2009) showed the alteration of MCA blood flow between 5 and 24 hours from the time of administered medication. Authors suggested that decreased resistance ratio could be related to decrease peak systolic velocity in MCA. The significant decrease in MCA peak systolic velocity after 24 hours of treatment. After next 24 hours the PSV values returned to the initial, basal line. We quoted Limas’ et al. research (2009) discussing the similar change in MCA PSV. However, opposite to Lima et al. we have not observed any changes in resistance index. We cannot agree with these authors’ citation that MCA resistance index was evaluated by Guclu et al. (2006) thus they had reported only a measurement of PI in their publication. Therefore we are of the opinion that further studies to evaluate additional parameter such as S/D ratio, are essential to explain MCA blood flow changes in our material.

As in our results umbilical artery and MCA pulsatility index ratio were not altered, cerebroplacental Doppler ratio didn’t change significantly during tocolysis treatment. It may suggest that short term changes observed in MCA PSV did not have an influence on fetal well-being. As we are searching for an explanation of differences existing in reviewed publications and our results we paid close attention to dose regimens for nifedipine. Guclu et al. (2006) administered a maximum loading dose of 40 mg nifedipine in the first hour. The required maintenance dose was depended on the loading dose and did not exceed the level of 120 mg daily. Lima et al. (2009) presented similar medication protocol. They started with a maximum first hour dose of 60 mg nifedipine. The total daily dose was 100 mg (apart of 2 patients with 120 mg). In our study initial oral dose of 20 mg was followed by 10 mg four times daily with total nifedipine dose of 60 mg per day. As there is no clear nifedipine medication protocol in tocolytic treatment, maximum daily dose of 100 mg is recommended (RCOG 2011). However, there is evidence that total dose above 60 mg is probably responsible for three- to four-fold increase in adverse events such as hypotension (Khan et al. 2010). This finding may directly influence the circulatory system and result in blood flow changes in different compartments. As potential impact of nifedipine on cardiac function was an important issue, we evaluated several hemodynamic parameters like E/A ratio, MPI and SF. Early/Atrial ratio is well known as a marker of ventricular diastolic function while shortening fraction is a parameter representing cardiac contractility (Godfrey et al. 2012). MPI a precise tool to assess global cardiac function which is not dependent of fetal heart rate and ventricular structure (Pellett et al. 2004; Tei et al. 1995). The advantage of all these parameters is that both sides of fetal heart can be assessed independently. Guclu et al. (2004; 2006) assessed cardiac function by examination of E/A ratio and an index of cardiac output. Although we used mostly different cardiac parameters the conclusions were similar. We did not find any alterations of cardiac function, therefore a direct impact of nifedipine on fetal heart was not observed. In our study maternal corticosteroids administration was a part of general tocolytic strategy. Therefore, an important question arose, if steroids may interfere with hemodynamic changes. Literature review brought conflicting data reporting different observations. Fetal heart rate was mildly modified while short and long term variations were decreased (Lunshof et al. 2005). Urban et al. (2005) presented data suggesting significant decrease in MCA PI and CPR index after dexamethasone. Chitrit et al. (2000) reported a significant decrease in fetal MCA impedance after maternal steroid therapy. Senat and Ville (2000) assessed blood flow in uterine arteries, umbilical arteries, descending aorta and middle cerebral arteries in the group of growth restricted fetuses after maternal management of bethamethasone or dexamethasone. No significant changes were found in Doppler measurements. The important issue is that most of the alterations in fetal arterial hemodynamics were observed after 72 hours from the administration of the first dose. Our research was focused on the period of first 48 hours of tocolytic treatment. We cannot conclude definitely that there are absolutely no changes in the hemodynamic condition due to corticosteroids. On the basis of our results we may only assume that steroid administration did not interfere with placental and fetal circulation.

In summary, of our study, hemodynamic cardiac activity in fetuses was unaffected during treatment. Although transient MCA PSV decrease was recorded after 24 hours of treatment a resolution of this distraction was observed within next 24 hours. Therefore oral administration of nifedipine seems not to alter uterine nor fetal arterial blood flow pattern seriously. As significant changes were observed by different authors further studies should be performed to verify the optimal total dose of nifedipine and its influence on hemodynamic conditions.

ACKNOWLEDGMENTS

Dr Grzesiak’s research project NN 407017035 was supported by Polish Ministry of Science and Higher Education.

REFERENCES

