Effects of intense cycling training on plasma leptin and adiponectin and its relation to insulin resistance

Nadia Lakhdar 1,2, Helmi Ben Saad 3, Myriam Denguezli 1, Monia Zaouali 1, Abdelkrim Zbidi 1, Zouhair Tabka 1, Anissa Bouassida 1,2

1 Laboratory of Cardio-Circulatory, Respiratory, Metabolic and Hormonal Adaptations to Muscular Exercise, Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia
2 Research unit, Sportive Performance and Physical Rehabilitation, High Institute of Sports and Physical Education, Kef, University of Jendouba, Tunisia
3 Department of Physiology, Hospital of Farhat Hached, Sousse, Tunisia

Correspondence to: Nadia Lakhdar Laboratory of Cardio-Circulatory, Respiratory, Metabolic and Hormonal Adaptations to Muscular Exercise Faculty of Medicine Ibn El Jazzar, University of Sousse, Sousse, Tunisia. tel: +216 73 700 900; fax: +216 73 224 899; e-mail: nadialkh@yahoo.fr

Submitted: 2013-04-10 Accepted: 2013-05-03 Published online: 2013-05-15

Key words: adiponectin; leptin; HOMA-R; heavy training; athletes

Abstract

OBJECTIVE: Adiponectin, the most abundant protein secreted by white adipose tissue, is known for its involvement in insulin resistance (HOMA-R). The purpose of this investigation was to assess the effect of intense cycling training for six months on plasma concentrations of adiponectin and leptin and HOMA-R.

METHODS: Eight trained males non professional cyclists participated in this study. They completed two times maximal exercises separated by six months heavy cycling training. Blood samples were obtained before exercise, at the end and after 30 and 60 minutes of recovery.

RESULTS: Before training, adiponectin concentrations were not significantly altered after maximal exercise, but plasma leptin levels decreased significantly at the end of exercise (−21.42%, p<0.01) and after 60 min of recovery (−21.18%, p<0.05). After 6 months training, subjects exhibited a decreased in control leptin concentrations (−44.91%, p<0.05) and in HOMA-R (−30.68%, p<0.05) and showed delayed increase in adiponectin concentrations (after 30 min of recovery) (14.10%, p<0.01).

CONCLUSIONS: Our results showed that adiponectin is sensitive to maximal exercise when realised after intense training and that six months heavy cycling training don't affect adiponectin concentrations, but decreases the synthesis of leptin and HOMA-R and improves aerobic capacity. Furthermore, it appears that after 6 months heavy chronic exercise adiponectin is not associated with aerobic capacity and/or insulin resistance and/or body composition modifications.
INTRODUCTION

Adipose tissue secretes multiple proteins known as adipocytokines that modulate various biological functions (Ronti et al. 2006). One of these adipocytokines is adiponectin (Scherer et al. 1995) which is the most abundant. Low circulating levels of adiponectin have been implicated in the development of insulin resistance (Yamamoto et al. 2004) and associated disorders such as obesity (Hara et al. 2003), dislipidemia (Saunders et al. 2012), type 2 diabetes (Lindsay et al. 2002) and cardiovascular diseases (Schulze et al. 2005). Adiponectin plays also an important role in glucose and lipid metabolism (Bouassida et al. 2010a). The response of plasma adiponectin concentration to acute and chronic exercise is limited and controversial (Bouassida et al. 2010b).

Further, evidence also suggests that an acute bout of vigorous aerobic exercise may result in a significant increase in plasma adiponectin levels in trained athletes, although this increase is not apparent until 30 minutes after the cessation of exercise (Jürimäe et al. 2005; Jürimäe et al. 2006). In contrast, immediately following the cessation of exercise, adiponectin levels are reported to be unchanged (Mansouri et al. 2011; Pop et al. 2010) or decreased (Numao et al. 2011; Gökbel et al. 2012).

Further, evidence also suggests that an acute bout of aerobic exercise at a moderate intensity has little or no impact on adiponectin levels in healthy, but untrained populations (Bouassida et al. 2010b).

It has been established that endurance training increases insulin sensitivity and causes improvements in insulin sensitivity. However, there is still controversy with regard to the effects of endurance training on adiponectin. For example, different authors have demonstrated no change (Plinta et al. 2011; Mansouri et al. 2011) or an increase (Saunders et al. 2012; Kelly et al. 2012) in adiponectin following different training protocols.

The purpose of the present study was to examine the effect of six months heavy cycling training on plasma adiponectin, leptin and insulin sensitivity during acute maximal exercise. We also sought to determine the effect of training on adiponectin and insulin resistance in trained cyclists subjects.

We hypothesized that adiponectin levels would be significantly increased following the acute maximal exercise after six months heavy cycling training. In this context, we want to confirm the results of Jürimäe et al. who indicated a delayed increase (after 30 min) in adiponectin concentration after heavy exercises performed by trained rowers. We also hypothesized that heavy chronic exercise would increase control adiponectin levels and decrease control leptin concentrations and insulin resistance.

METHODS

Participants

Eight healthy young males non professional cyclists were enrolled into this study before the beginning of the season (after one month and half holiday with no training or dietary restrictions). Their physical characteristics are shown in table 1. None of them smoked or drank alcohol or was taking any medication. Informed consent was obtained from all subjects and the study protocol that was in accordance with the principles of the Declaration of Helsinki 1975 (as revised in 1983). The study has been approved by the Ethical Committee of the University Hospital of Sousse, Tunisia.

Anthropometric measurements

Height was measured with a standing stadiometer and recorded with a precision of 0.1 cm. Body mass, percent body fat, fat mass and lean body mass were measured using bioelectrical impedance analysis (BEUER, Germany). Body mass index (BMI) was calculated using the standard formula: body mass in kilograms divided by height in meters squared (kg.m⁻²).

Experimental design

Participants performed an incremental exercise test to exhaustion on a calibrated cycle ergometer (Ergoline, Germany) to determine maximal oxygen consumption (VO₂max). The test consisted in a 5 min warm-up followed by increments in power of one minute at 60 rpm until exhaustion. The loads during warm-up and increments were individually adjusted by taking into account the age, height and body mass of each subject (Wasser- man et al. 1987). The analyzer was calibrated before the rest with the gases of known concentration.Validation of attainment of VO₂max satisfied two of the following four criteria: 1) an oxygen uptake plateau despite increasing exercise intensity, 2) respiratory exchange ratio ≥1.10, 3) maximal heart rate within 10 beats.min⁻¹ of the age predicted maximal values (Tanaka et al. 2001) and 4) subject exhaustion.

Exercise sessions

These incremental exercises were carried out in Farhat Hached Hopital laboratory. Each subject performed them separated by a 6-months interval. A standardized breakfast (398 kcal) (Food Processor, version 8.3) was taken at 08:15 a.m. in the laboratory (the last meal taken by the subjects was at around 8:00 p.m the day before and no other food or drink was taken until breakfast) just after the blood sampling (08:00 a.m.). The exercise started at 09:00 a.m.

The experiment was designed as follows:
• Maximal Exercise 1 (MEx1): This exercise was performed before the beginning of the preparation period.
• Maximal Exercise 2 (MEx2): This exercise was performed after six months cycling training.
Blood analysis
Blood samples were collected by venupuncture on 4 occasions: before the exercise control value (S1), at the end (S2), after 30 min (S3) and 60 min (S4). The same protocol was repeated after 6 months of heavy training.

The fasting blood samples (10 ml) were obtained from the antecubital vein with the subject in the upright position at 8:00 a.m. The plasma was separated and frozen at –80 °C for later analysis.

Plasma adiponectin concentration was measured by immunoradiometric assay (Diagnostic Systems laboratories, USA intra-assay coefficient of variation (CV) was 2.6% and interassay CV was 3.7%). Plasma leptin concentration was determined by an immunoradiometric method (Immunochem, France, France, intra-assay CV was 3.3% and interassay CV was 4.8%). Glucose was measured using the hexokinase/glucose-6-phosphatase dehydrogenase method with a commercial kit (Boehringer, Mannheim, Germany). Plasma insulin concentration was estimated by a radioimmunoassay method (Immunochem, France, intra-assay CV was 2.8% and interassay CV was 5.3%). The insulin resistance index from fasting plasma insulin and plasma glucose levels was estimated using the homeostasis model assessment for insulin resistance (HOMA-R) and was calculated as described by Mathewes et al. (1985) ([fasting insulin (µU/ml) x fasting glucose (mmol/L)/22.5](23).

Hydration
To maintain optimal hydration, each subject drank three times the amount of 200 ml of water every 30 min; just before, after 10 and 40 min recovery.

Exercise training
The training program comprised 3 periods:

- Preparatory period (3 months):
The objective for this period is built a good basic fitness level at least 500 km for 5 days/week. The intensity of the exercise is done at 55–60 VO₂max (which corresponds with 60–65% of the heart rate reserve (HRR)). The HRR describes the difference between the maximum heart rate (HRmax) and resting heart rate. HRR=HRmax - HRrest. The training heart rate can now be calculated: Training HR=(%intensity × HRR) + Resting HR. The HRmax was controlled by a Sport-tester device (Vantage NV, Polar Electro, Kempele, Finland). The mileage of the long ride increases gradually by no more than 10–12% per week.

- Transition or Competition preparation phase period (2 months):
For this period, the cyclists performed 5 days/week with an intensity above 80% HRmax
Monday: 2 hours with intervals, of which 45 minutes high intensity
Tuesday: recovery day, rest
Wednesday: 2 hours: 3×20 min minial exercise + 8× sprint (6 sec work and 3 min active pause)
Thursday: 11/2–2 hours with intervals, of which 40 minutes high intensity
Friday: day off
Saturday: 1 ½ hours: 3x20 min endurance + 6× sprint (8 sec work and 2 min active pause)
Sunday: up to 4 hours: 45 min combination of high intensity and fartlek.

- Competition period (1 month):
At the competition phase of training is marked by intensity 85–88% HRmax. The cyclists trained 3 days/week.
Monday: 2–3 hours with intervals, of which 30 minutes high intensity and 30 minutes endurance.
Tuesday: day off
Wednesday: 2–3 hours with intervals, of which 30 minutes high intensity and 30 minutes endurance.
Thursday: day off
Friday: up to 4 hours: 45 minutes combination of high intensity and fartlek.
Saturday: day off
Sunday: competition

Statistical analysis
Mean ± standard deviation (SD) were calculated for all variables. Friedman two-way analysis was performed, relating exercises (MEx1 and MEx2) and time of sampling (S1 to S4). When this analysis revealed significant differences a Wilcoxon paired test was used to identify significant changes between S1 and S2 to S4 and a Mann-Whitney test for unpaired data was used to locate where significant differences existed between MEx1 and MEx2. Correlation between adiponectin, leptin, insulin, BMI, body weight, percent body fat, body fat mass, lean body mass, VO₂max, PAP and HOMA-R was performed using the Spearman method. p<0.05 was considered statistically significant.

RESULTS

Subject characteristics
Physical characteristics of the subjects before and after 6 months training are presented in Table 1. After the intervention, body mass, BMI, fat mass and percent body fat were significantly decreased (p<0.05). Whereas, VO₂max and PAP increased significantly by 11.25% (p<0.05) and by 6.58% (p<0.05), respectively.

Hormonal and metabolic modifications
Before training, adiponectin concentrations were not significantly altered after maximal exercise, whereas plasma leptin concentrations decreased significantly at the end of exercise (−21.42%, p<0.01) and after 60 min of recovery (−21.18%, p<0.05) (Table 2, Figures 1 and 2). After 6 months training, subjects exhibited a delayed increase in adiponectin concentrations (after 30 min of...
Nadia Lakhdar, Helmi Ben Saad, Myriam Denguezli, Monia Zaouali, Abdelkrim Zbidi, Zouhair Tabka, Anissa Bouassida

recovery) (14.10%, p<0.01) and decreased control leptin concentrations (–44.91%, p<0.05) (Table 2, Figure 1, 2). HOMA-R was significantly reduced by 30.68%, p<0.05 following the 6 months cycling training.

Table 1. Physical characteristics of subjects.

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After 6 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Yr)</td>
<td>20.7±4.8</td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>1.79±0.06</td>
<td></td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>66.9±6.37</td>
<td>65.3±5.8*</td>
</tr>
<tr>
<td>BMI kg/m²</td>
<td>20.7±1.3</td>
<td>19.9±1.1*</td>
</tr>
<tr>
<td>Body Fat (%)</td>
<td>7.8±1.4</td>
<td>7.5±1.0*</td>
</tr>
<tr>
<td>Body fat mass (kg)</td>
<td>5.3±1.3</td>
<td>4.9±1.0*</td>
</tr>
<tr>
<td>Lean body mass (kg)</td>
<td>31.1±1.7</td>
<td>32.3±3.1</td>
</tr>
<tr>
<td>VO₂max (ml/kg/min)</td>
<td>64.0±5.9</td>
<td>72.1±8.8*</td>
</tr>
<tr>
<td>PAP (w)</td>
<td>399±23.70</td>
<td>425±31.19*</td>
</tr>
</tbody>
</table>

Data are means (±SD). VO₂max: Maximal oxygen consumption; PAP: Peak Aerobic Power. *P<0.05 Before vs after 6 months.

Table 2. Mean ± SD changes in plasma adiponectin, leptin and insulin concentrations and in HOMA-R before and after the two maximal exercises realised before and after 6 months cycling training.

<table>
<thead>
<tr>
<th></th>
<th>Blood sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CV S1 0 min 30 min 60 min</td>
</tr>
<tr>
<td>Adiponectin µg/ml</td>
<td>Before 7.41±3.20 7.54±3.19 8.14±3.21 7.57±3.73</td>
</tr>
<tr>
<td></td>
<td>After 6 months 5.53±2.12 5.54±2.10 6.31±2.09** 5.44±2.13</td>
</tr>
<tr>
<td>Leptin ng/ml</td>
<td>Before 8.26±4.85 6.49±4.59** 7.54±4.87 6.51±4.35**</td>
</tr>
<tr>
<td></td>
<td>After 6 months 4.55±2.54+ 5.09±3.01 4.36±1.75 4.34±2.17</td>
</tr>
<tr>
<td>Insulin µU/ml</td>
<td>Before 10.26±5.34 4.86±1.13* 6.19±5.79 4.05±2.52*</td>
</tr>
<tr>
<td></td>
<td>After 6 months 11.94±7.18 6.44±2.73* 4.71±2.62* 2.37±0.90**</td>
</tr>
<tr>
<td>HOMA-R</td>
<td>Before 0.88±0.22</td>
</tr>
<tr>
<td></td>
<td>After 6 months 0.61±0.16+</td>
</tr>
</tbody>
</table>

HOMA-R: Homeostasis model assessment for insulin resistance; S: Sampling point; CV: Control value. *p<0.05; **p<0.01 CV vs other samplings. +p<0.05 Before vs after 6 months.

Correlations

At rest, adiponectin levels during the second maximal exercise was only related to rest insulin concentrations (r=0.89, p<0.05).

Basal adiponectin concentration was not related (p>0.05) to body mass (r=−0.56 MEx1; r=0.11 MEx2), BMI (r=−0.30 MEx1; r=−0.07), percent body fat (r=−0.38 MZEx1; r=−0.02 MEx2), fat mass (r=−0.36 MEx1; r=−0.04 MEx2), lean body mass (r=0.57 MEx1; r=0.02 MEx2), VO₂max (r=−0.14 MEx1; r=−0.46 MEx2), PAP (r=−0.14 MEx1; r=−0.59 MEx2), insulin (r=−0.29 MEx1), leptin (r=−0.15 MEx1; r=−0.29 MEx2), or HOMA-R (r=0.50 MEx1; r=0.73 MEx2).

Fig. 1. Relative changes in serum levels of adiponectin before and after 6 months cycling training. Data are presented as percentage changes in relation to baseline values. **p<0.01 vs baseline.

Fig. 2. Relative changes in serum levels of leptin before and after 6 months cycling training. Data are presented as percentage changes in relation to baseline values. **p<0.01 vs baseline. #p<0.05 before vs after 6 months training.
DISCUSSION

The main findings of the present study were that: Before training, we failed to demonstrate significant changes in adiponectin concentrations after maximal exercise but, we showed a decrease in leptin concentrations. After 6 months training, we indicated a delayed increase in adiponectin concentrations after maximal exercise, a lower HOMA-R and control leptin concentrations and an increased aerobic capacity.

Adiponectin response to acute and chronic exercise

Our results support our first hypothesis and suggest that an acute bout of maximal exercise when realised by trained cyclists results in a significant delayed increase in plasma adiponectin levels.

Thus, we are the third study that shows a delayed increase (after 30 min) in adiponectin concentration after intense exercises performed by trained athletes. Indeed, trained rowers experienced a significant increase in adiponectin levels 30 min post 6.5 km rowing exercise at individual anaerobic threshold (Jürimäe et al. 2006) and post maximal 6 km rowing (Jürimäe et al. 2005). These authors attributed the delayed increase in adiponectin concentrations to the effects of short-term strenuous exercises realized when all major muscle parts are involved, such as rowing in highly trained subjects. Kelly et al. (2012) and Saunders et al. (2012) indicated also an increase in adiponectin concentrations after seven consecutive days of vigorous exercise in obese adults and after both acute and short-term aerobic exercise result in abdominally obese men, respectively. On the other hand, plasma adiponectin remained unchanged after 1) long-term moderate aerobic exercise in young female handball and basketball players (Magkos et al. 2010), 2) high intensity resistance exercise performed by trained and untrained subjects (Mansouri et al. 2011) and 3) single bout of moderate-intensity endurance exercise in healthy men and women (Magkos et al. 2010).

In contrast to our second hypothesis, we didn’t demonstrate an increase in control adiponectin levels after the training in spite of the small modifications in body composition and aerobic capacity. Our results are in good agreement with previous exercise training studies showing no change in basal adiponectin levels after 12 weeks endurance or resistance training despite an improvement of maximal oxygen consumption and a significant decrease in body fat percentage (Ahmadian et al. 2007). Several studies have shown that smaller decreases in the BMI do not result in any significant changes in adiponectin concentrations (Ryan et al. 2003; Mousavinasab et al. 2005). On the other hand, there are some reports indicating that considerable weight loss produces a significant increase in adiponectin levels (Yang et al. 2002; Esposito et al. 2003). Therefore, we presume that we did not observe any significant changes in adiponectin levels in our study because the weight loss produced by exercise training was too subtle.

Potential mechanisms

Although insulin levels have been suggested to play a role in acute changes in adiponectin levels (Fasshauer et al. 2002; Jürimäe et al. 2005), it seems unlikely to explain the increase in adiponectin observed in the present study. In the present study, adiponectin levels were elevated above baseline only after 30 min recovery, while insulin levels were reduced in all time points for both exercises (immediately following exercises). This suggests that changes in insulin levels are not the primary mediator of the observed change in adiponectin levels. The mechanisms linking adiponectin to insulin are less unclear and further studies are necessary to clarify why in certain case adiponectin remains stable in spite of hypoinsulinemia. Further studies are needed to determine the mechanisms which intervene in the regulation of the synthesis and the release of adiponectin after the exercise and why this response is delayed.

Insulin resistance and adiponectin

In the present study, 6 months of heavy cycling training improved insulin resistance by 30.68% (p<0.05). The relationship between adiponectin, insulin resistance and chronic exercise seems complicated and three models exist: 1) like our results, adiponectinemia stable and decreased insulin resistance (Ahmadian et al. 2007), 2) hyperadiponectinemia and stable insulin resistance (Mujumdar et al. 2011) and 3) hyperadiponectinemia and decreased insulin resistance (Moghadasi et al. 2012). Several mechanisms have been proposed to be responsible for the increases in insulin sensitivity after exercise training (Ebeling et al. 1993; Dela et al. 1994). These include increased post-receptor insulin signaling (Dela et al. 1993), increased glucose transporter protein and mRNA (Dela et al. 1994), increased activity of glycojen syntheses and hexokinase (Ebeling et al. 1993) and increased muscle glucose delivery.

Leptin response to acute and chronic exercise

Another interesting finding of this study was that plasma leptin was significantly decreased at the end of the first exercise (–21.42%, p<0.01) and after 60 min of recovery (–21.18%, p<0.05).

Leptin concentrations significantly decreased following 1) 20 min at 80% of peak aerobic power (PAP) in overweight males (Bouassida et al. 2010a), 2) 6.5 km rowing at the individual anaerobic threshold in college level male rowers (Jäärimäe et al. 2007) and 3) 90-min rowing at 70–75% of VO2max in trained rowers (Desgorces et al. 2004). On the other hand, Bouassida et al. (2010a); Kyriazis et al. (2007) and Olive & Miller (2001) showed that leptin concentrations were not altered after respectively, 20 min at 60% of PAP in overweight males, 60 min at 60% of VO2max in obese men and 1 hour at 60% of VO2max in trained subjects.
The decrease in leptin concentrations after the first maximal exercise can be explained by the total work output that was done during this exercise was beyond the threshold reduction in energy availability that must be reached to alter the leptin concentration (Bouassida et al. 2010a). But, the same energy expenditure was done during the second exercise after which we didn’t found reduction in leptin. We speculate that lower control leptin concentration observed after training prevent us to note decline in leptin.

Following this study, we pointed out that interestingly, after 6 months trained subjects exhibited decreased control leptin concentrations (−44.91%, p<0.05) with decreased body weight, BMI and body fat mass.

Several previous studies established that leptin concentrations were lower after 2 weeks of high-volume training in trained rowers (Räsmson et al. 2012) and after 3 months aerobic training in preparation for the match season (Plinta et al. 2011). These declines in circulating leptin levels occur without body weight changes. Similar to our results, Huskoren et al. (2010) suggested that 8 weeks military training altered leptin and BMI. On the other hand, Ara et al. (2006) reported that 6 weeks resistance training did not effect leptin concentrations.

We suggest that weight and body fat loss combined with improved insulin sensitivity noted after 6-months of training cycling decreases control leptin concentrations.

The present study has several strengths and limitations which warrant mention. As mentioned previously, the present analysis focused only on adiponectin, leptin and insulin concentrations, rather than looking at concentrations of specific hormones that can modulate adiponectin concentrations such as interleukin-6, tumor necrosis factor and catecholamine (Chen et al. 2011; Schulpis et al. 2005). The current study also focused exclusively on a relatively trained group of non professional cyclists, and thus our findings may not translate to other individuals with ages or phenotypes different from those of participants in the current sample.

In conclusion, our results showed that adiponectin is sensitive to maximal exercise when realised after intense training and that six months heavy cycling training don’t affect adiponectin concentrations, but decreases leptin and HOMA-R and improves aerobic capacity. Furthermore, it appears that after 6 months heavy chronic exercise adiponectin is not associated with aerobic capacity and/or insulin resistance and/or body composition modifications.

ACKNOWLEDGEMENTS

The author would like to thank all the subjects who participated in this study, The federation of cyclist, the staff of the Physiology Department, Faculté de Médecine Ibn el Jazzar, 4002 Sousse, Tunisia and the staff of the Biochemistry Department, Hôpital Farhat Hached, 4002 Sousse, Tunisia. This work was supported by the “Ministère de l’Enseignement Supérieur, de la recherche Scientifique et de la Technologie, Tunisia”.

REFERENCES

Adiponectin is altered only after maximal exercise

